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Abstract

Relying solely on a single sensor, such as LiDAR, intro-
duces inherent limitations in perceiving complete and reli-
able object states, particularly under conditions of occlu-
sion, information sparsity, and sensor noise. To enhance
the robustness and accuracy of 3D object detection for au-
tonomous driving, we introduce two key techniques: affine-
transformation-based instance augmentation and Multi-
Modal Bird’s-Eye View (BEV) Fusion framework encod-
ing RGB images with LiDAR point clouds in the BEV
feature space. Experimental results confirm that the in-
stance augmentation alone significantly improves the detec-
tion accuracy by 7.11% mAP, while our late-fusion model
(BEVFusion-L) achieved the highest detection performance
of +10.96% mAP increase over the CenterPoint baseline
model. Thus, these strategies collectively demonstrate the
generalization performance of 3D object detection, particu-
larly for small and occluded objects. The codebase is made
available at https://github.com/Nicosoh/AMP__
Final Assignment/tree/working

1. Introduction

Autonomous vehicles have the potential to make trans-
portation safer, more efficient, and more accessible. How-
ever, before it can be safely deployed, it must be able to per-
ceive and react to unpredictable environments. A key part
of this is 3D object detection: the ability to locate and clas-
sify surrounding objects such as cars, pedestrians, and cy-
clists in three-dimensional space. Camera, RADAR, and Li-
DAR are the most common sensors used, and among these,
LiDAR is often preferred because of its ability to generate
precise 3D point clouds of the environment. Many state-
of-the-art (SOTA) 3D object detectors, such as CenterPoint,
rely mainly on LiDAR for object detection and classifica-
tion [18]. To counter these limitations and improve the
current CenterPoint baseline, we propose an approach that,
next to LiDAR data, uses a secondary RGB image modal-
ity. BEVFusion combines data from both sensors to en-
hance detection performance. In addition to addressing the
observed overfitting and poor pedestrian detection, we apply
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data augmentation to increase data diversity and overall gen-
eralization. While CenterPoint achieves SOTA performance
on LiDAR-based 3D object detection benchmarks, it relies
solely on a single modality. This reliance becomes a limita-
tion in scenarios where the LiDAR data is sparse, noisy, or
occluded.

This paper is structured as follows: Section 2 reviews re-
lated work. Section 3 describes our proposed methodology
for BEVFusion and data augmentation. Section 4 presents
our experimental setup, results, and analysis. Finally, sec-
tion 5 concludes the paper.

2. Related work
2.1. Lidar-based 3D Object Detection

To place our approach in context within the landscape of
LiDAR-only 3D detection, we review SOTA architectures.
Influential LiDAR-only detectors include voxel-based Vox-
elNet [19], its sparse-convolution successor SECOND [17],
the pillar-based PointPillars [6], the hybrid two-stage PV-
RCNN [13], and the anchor-free CenterPoint [ 1 8]. VoxelNet
divides the cloud into a 3D grid and applies dense 3D CNNg,
resulting in strong accuracy at the expense of high computa-
tional cost. SECOND reduces this load via sparse convolu-
tions, trading off some fine detail. PointPillars projects verti-
cal columns into a BEV pseudo-image for fast 2D CNN pro-
cessing, sacrificing vertical resolution for real-time speed.
PV-RCNN generates coarse BEV proposals before refin-
ing them with a point-based head, achieving precise local-
ization with minimal overhead. CenterPoint learns a BEV
heatmap of object centers and directly regresses sizes, orien-
tations, and velocities, an anchor-free, rotation-invariant de-
sign delivering SOTA single-LiDAR performance in a mod-
ular framework.

2.2. Multiply Modalities Fusion for 3D Detection

Fusion of complementary modalities like LiDAR and
cameras is a popular approach that has been extensively ex-
plored. Vora et al. published a sequential fusion technique
called PointPainting, which decorates LiDAR points with
class information through semantic segmentation [15]. This
technique increased the mAP by 6.3 on the nuScenes dataset
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and was impressive based on its simplicity [2]. Philion et.
al proposed Lift, Splat, Shoot (LSS) for unprojecting cam-
era features back into 3D space [12]. This allowed multi-
view cameras to transform from 2D images into bird’s eye
view (BEV) through probabilistic estimation of depths and
camera intrinsics. This laid the foundation for multiple ver-
sions of BEVFusion [9] [10]. This area of BEV-related ap-
proaches is currently still an active area of research, with
fusion through attention mechanisms [7], combining multi-
ple complimentary tasks such that the model can learn better
representations [8] and also modality dropout to account for
missing sensor input [16].

2.3. Overfitting and Generalization in 3D Object
Detection

From the baseline Center-point model, it can be seen that
the model is over-fitting after epoch 7 due to the diverging
train and validation loss. It has 5.2M parameters with only
5139 train samples while for comparison, ResNet34 [4] with
21.8M parameters was trained on ImageNet [3] with 1.2M
images which is 55 times the number of samples per pa-
rameter. There are various methods to augment data hence
creating variability to reducing the probability of overfitting.
Zhu et al. conducted a survey of augmentation techniques
ranging from basic to specialized [20]. The most common
augmentation techniques are the affine transformations, like
rotation, flipping, scaling, and translation. A particular lim-
itation of the VoD dataset is its annotation scope, restricted
solely to the camera’s field of view, unlike datasets offering
full 360-degree object annotation. This spatial constraint
likely contributes to a lower average number of instances
per frame. Consequently, the combined challenge of lim-
ited training samples and sparse instance density per frame
highlights the critical role of data augmentation in fostering
robust model generalization.

3. Methodology
3.1. Overview

To mitigate the inherent limitations of the LiDAR-only
CenterPoint baseline on the VoD dataset [ 1], notably its
susceptibility to overfitting and suboptimal pedestrian de-
tection, we propose two principal enhancements. First, a
multi-modal fusion approach that integrates RGB camera
data with LiDAR. Second, a data augmentation pipeline,
encompassing affine transformations is applied to improve
generalization and data diversity. These modular contribu-
tions are evaluated both individually and in combination to
comprehensively assess their effect on 3D object detection
performance.

3.2. Multi-Modal BEV Fusion

Our fusion method builds upon the CenterPoint frame-
work [ 18], which processes LIDAR and image modalities to

create a unified Bird’s-Eye View (BEV) representation for
robust 3D object detection. For the LiDAR pipeline, it fol-
lows Centerpoint, which builds upon the PointPillars frame-
work for LiDAR feature extraction. For the image peipeline,
it employ a ResNet50 [4] backbone truncated at layer 3 to
extract deep semantic features from the front-facing RGB
camera. Since these image features are in perspective view
and not aligned with the LiDAR features, it is transformed
into the BEV domain using LSS [12].

The BEV features from both modalities are concatenated
channel-wise, forming a multi-channel BEV representation.
Inspired by TransFusion, the BEV representation is then fed
through 4 layers of 2d Convolutions, Batch Normalization,
and ReLU activations instead of an attention mechanism [1].
The learned fusion module will perform 2 roles, firstly to
correct possible spatial misalignment and second to filter out
unnecessary features. The overview of the proposed model
is shown in Figure 1.

Additionally, another version of BEVFusion, which we
term BEVFusion-L, where L stands for late fusion. The
image pipeline remains the same except that ResNet50 is
swapped for ResNet34. The BEV representation of the Li-
DAR points first goes through SECOND and SECONDFPN
and then is passed to the fusion module together with the
LSS features from the image pipeline, and lastly followed
by the head. The reasoning behind this is to fuse only af-
ter meaningful features from the pseudo images (from Pil-
lar Scatter) have been extracted. Note: BEVFusion-L was
trained over 12hrs and hence is not considered for submis-
sion and only used in the analysis and discussion.

3.3. Data Augmentation

To increase invariance in the training dataset, we adopt
an instance-based augmentation technique. As shown in Ta-
ble 1, the 5,139 training frames contain a total of 38,436
annotated objects. While the Pedestrian and Car classes are
relatively well represented, Cyclists are significantly under-
represented. Moreover, most instances of the Cyclist and
Pedestrian classes are either fully visible or only partially
occluded, with just 17.4% and 13.1%, respectively, labeled
as largely occluded.

Cars tend to appear at greater distances on average
(¢ = 31.73 m), while Pedestrians are typically closer (¢ =
23.61 m). Cyclists fall in between (1 = 26.01 m), with all
classes exhibiting comparable spatial variance.

These statistics highlight clear imbalances in both class
frequency and spatial distribution, underscoring the need for
augmentation strategies to improve model generalization.
Inspired by He et al. [4], we leverage affine transformations,
including random flipping along the z-axis, rotation within
+0.7 radians, scaling in the range [0.95, 1.05], and transla-
tion with Gaussian noise of standard deviation 0.5 meters
along each axis.

To further mitigate class imbalance, we created a ground
truth database with the training data and implemented
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Figure 1. Overview of the BEVFusion architecture, which performs multi-sensor fusion in the BEV feature space.

ground truth sampling for both the LiDAR-only and the Li-
DAR/camera fusion settings. Although effective in diversi-
fying training data, this method was ultimately excluded due
to its increased computational requirements under our train-
ing constraints. The data augmentation pipeline was largely
adapted from the OpenPCDet repository [14], with consid-
erable modifications to accommodate our coding environ-
ment and the specific structure of the dataset.

Fully Partly Largely
Class Count  y.ible Occluded Occluded
Car 15608 12.6% 56.8% 30.6%
Pedestrian 16143  45.4% 37.3% 17.4%
Cyclist 6685  68.4% 18.5% 13.1%
All Classes 38436  36.1% 41.9% 22.0%

Table 1. Object counts and occlusion percentages by class (total
frames: 5139).

3.4. Training Details

Evaluation of the CenterPoint model with augmentation
was conducted using a batch size of 16. Training adhered
to the original CenterPoint training [18]. The model was
trained for 14 epochs, with weights from epoch 11 selected
for final evaluation. A learning rate of 0.001 was employed.

Our implementation of BEVFusion was trained using the
largest batch possible, which was 6. This is because Cen-
terPoint and one of the original BEVFusions were trained
with a batch of 16 and 32, respectively, signifying the pref-
erence for larger batches [18] [9]. A maximum learning rate
of 0.001 was used with cosine annealing, which smoothly
varies the learning rate to promote training stability in the
short training window of 4 hours, and the model was trained
for a total of 8 epochs. For the image encoder, ResNet50
pretrained on ImageNet was utilized and frozen; the rest
were either randomly initialized or with He Initialization for
training stability with ReL.U activations [5].

Lastly, for BEVFusion-L, a batch of 4 was used. It
was trained for 18 epochs, and the weights from epoch 16
were used for the final model. The learning rate was set at
0.0001.

4. Experiments
4.1. Dataset and Experimental Setup

The View of Delft (VoD) dataset serves as the founda-
tion for training and validating our framework. We focus
on the detection of three target classes: Cars, Pedestrians,
and Cyclists. Our proposed approach leverages two modal-
ities: 3D LiDAR point cloud and RGB image zero-padded
to a square and resized to 640 for BEVFusion and resized
to 1280 for BEVFusion-L. Since data augmentation is done
by applying affine transformations on instances, the total in-
stances of the target class after data augmentation remains
the same. The dataset is split into 70% for training and 30%
for validation from its total of 7,386 frames.

The performance of the object detection models is quan-
tified using the Mean Average Precision (mAP), which as-
sesses both localization accuracy and classification perfor-
mance by averaging the Average Precision (AP) across all
object classes and multiple Intersection over Union (IoU)
thresholds. A comparative analysis is primarily performed
against CenterPoint. It is to be noted that, without explicit
data augmentation, the baseline CenterPoint model achieves
a mAP of 66.78 on the VoD test set, serving as the reference
for evaluating subsequent methods.

4.2. Quantitative Results

Table 2 presents the results on the VOD unseen test set,
all the variations of the proposed model outperform the Cen-
terPoint, with CenterPoint with data augmentation slightly
edging out BEVFusion with data augmentation. BEVFusion
- L with data augmentation performed the best with +10.96
over the baseline.

Method Modality mAP (%)
CenterPoint L 66.78
CenterPoint + Data Aug L 73.89(+7.11)
BEVFusion + Data Aug L+C 73.05(+6.27)
BEVFusion - L + Data Aug L +C 77.74(+10.96)

Table 2. Driving Corridor mAP on the VOD Test set

It is observed that BEVFusion-L with data augmentation
strongly validates that fusing features after significant se-
mantic and spatial information extraction from each modal-
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Figure 2. Distance vs Class vs mAP for each trained model

ity leads to more robust and accurate detections. The con-
sistent mAP gains across various configurations when em-
ploying data augmentation confirm the hypothesis of lim-
ited dataset size and inherent class or occlusion imbalances
in the baseline framework.

4.3. Discussion

Impact of Data Augmentation: Overfitting was evident
in the baseline CenterPoint model, as observed from its di-
vergence between its training and validation loss. Introduc-
tion of the augmentation to CenterPoint mitigated this occur-
rence and also positively impacted the model’s performance
by 7.11 mAP. From Table 1 it can also be seen that with
augmentation, the baseline model outperforms in all target
classes and distances except for cars at 20-30m and >30m.
The cause of the drop in those categories is, however, un-
known, as affine transformations do not modify the density
but only the physical location and size. A deeper investiga-
tion is required to find the root cause. Notably, the perfor-
mance improvement is also carried across to both BEVFu-
sion models.

Impact of Multi-modal Fusion: Integrating both Li-
DAR (L) and Camera (C) modalities validates the comple-
mentary strengths of LIDAR’s precise point cloud and cam-
era’s rich semantic features. BEVFusion with data augmen-
tation outperformed CenterPoint, but underperformed Cen-
terPoint with augmentation, even with an additional modal-
ity of the camera. Analysis was performed with visual in-
spection of the outputs from the LiDAR BEV stream and
the camera BEV stream. The camera BEV stream displayed
signs of high similarity between all channels, pointing to
the possibility of a faulty implementation of LSS. However,
this might also be due to the softmax on depth probabili-
ties. Moving to BEVFusion-L, this outperforms CenterPoint
with Augmentation, which suggests that the fusion between
modalities should only be after both respective backbones.
Future improvements could also be an additional BEV back-
bone followed by FPN after fusion for additional feature ex-
traction before the head, and a dedicated FPN for the image
stream.

From Figure 2 it is observed from the average mAP
across distances, BEVFusion-L outperforms all other mod-
els, while CenterPoint with augmentation is on par with

BEVFusion except for >30m. This could possibly mean
that the camera stream is adding semantic information to
ranges >30m. However, cameras are similar to LiDAR with
increased sparsity/decreased resolution for further ranges.
Looking at the individual classes, similar performance can
be observed for cyclist, while for cars and pedestrians, equal
or improved performance by BEVFusion is observed, except
for pedestrians with BEVFusion at 0-20m and 20-30m. This
is probably because, since pedestrians/cyclists are smaller
objects as compared to cars, it does not provide additional
information. However, cars are still visible at the 20-30m
and >30m, hence improving performance and elevating the
overall mAP.

5. Conclusion

This study addressed the limitations of LiDAR-centric
3D object detection, particularly overfitting and generaliza-
tion challenges on the VoD dataset. The demonstrated data
augmentation via instance-level affine transformations ef-
fectively mitigates overfitting with +7.11% mAP improve-
ment from the CenterPoint baseline. Furthermore, our in-
vestigation into multi-modal BEV-fusion revealed that the
late-fusion strategy enhances the mAP by +10.96% over the
baseline, underscoring the advantages of fusing semanti-
cally rich representation for robust generalization. Future
work will focus on refining augmentation techniques for
small, distant objects and effectively using dense depth in-
formation from Image data.

6. Contributions

* N. Soh developed BEVFusion, BEVFusion-L. & Affine
Augmentations and wrote 2.2, 2.3, 3.4, 4.2, 4.3.

* M. Saravanan developed depth estimator & segmentation
encoder with LiDAR fusion (not used eventually) and wrote
Abstract, 4.1, 4.2, 4.3, 5.

* C. Mingelen developed GT database and sampling code
for both LiDAR only model and LiDAR, image fusion (not
used eventually) and wrote 3.3.

* R. de Graaf developed Dynamic Voxelization, PointPaint-
ing(not used eventually), Data processing and visualizations
and wrote 1, 2.1, 3.1, 3.2.
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