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ABSTRACT

This report presents an end-to-end machine
learning approach for MAV decision-making us-
ing a Convolutional Neural Network. The ap-
proach is tested in simulation and then validated
with real-life experiments in environments with
obstacles. It also discusses why classical com-
puter vision approaches might fail in this sce-
nario.

1 INTRODUCTION

Micro air vehicles in the last few decades have become
more prevalent. As MAVs transition into real-life applica-
tions, it is evident that they will require advanced percep-
tion and path-planning algorithms to help in decision-making
and navigation. Adapting pre-existing frameworks some-
times proves challenging due to the limited computational re-
sources onboard MAVs. This report aims to showcase a ma-
chine learning approach using a Convolutional Neural Net-
work for end-to-end decision-making in an environment with
obstacles. The CNN is derived from the MobileNetv4 Net-
work [1] and is trained using data collected from the Cyber-
zoo.

The goal of the quadrotor was to cover as much distance
as possible in 10 minutes while avoiding different types of
obstacles, some of which where known beforehand and others
were unknown. The quadrotor used is a Bebop Parrot 2; as
can be seen in figure 1, it is equipped with two cameras, a
front-facing and a bottom-facing one, as well as an IMU.

Figure 1: Image of Bebop Parrot 2

The CNN was used for depth and estimation and for gen-
erating obstacle probabilities within regions of the field of

view of the quadrotors’ front camera.

2 INITIAL IDEAS

In the beginning of the project, the group had two ideas.
The first was to use classic optical flow approaches to esti-
mate the distances between the quadrotor and the obstacles
[2]. Farnebäck’s dense optical flow algorithm [3] was used to
compute the optical flow throughout the frame, obtaining the
flow magnitude for each pixel. The frame was segmented into
three equal sections: left, center, and right. Control decisions
were made based on each section’s total optical flow magni-
tude, using a predefined threshold. Although this approach
initially appeared promising, it was ultimately deemed un-
suitable due to texture-less regions within the cyberzoo, such
as the curtains. These low-texture areas introduced ambigui-
ties in depth estimation, preventing the quadrotor from accu-
rately detecting the cyberzoo’s boundaries. This is supported
by the study of Xu et al. [4], where it is stated that pixels in
low texture regions are often neglected since the target pixel
is usually linked to multiple candidate points in the source
which which negatively affects the accuracy of depth estima-
tion.

As shown in Figure 2a and Figure 2b, the algorithm in-
correctly suggested a 180-degree turn due to the presence of
high texture in the middle section, which corresponded to the
open space in the cyberzoo. Furthermore, another limitation
was observed: optical flow was detected primarily along the
edges of obstacles, and not at their centers. This is supported
by study on EpicFlow [5], where the failure cases highlight
that when the contours are missing on thin objects or smooth
regions optical flow fails and uses the value from the edges
thereby providing limited information about the flow at the
center of the objects. This issue, illustrated in Figure 2c and
Figure 2d, stemmed from the smooth texture of certain sur-
faces, which failed to generate significant optical flow.

The second proposed idea was to use a convolutional neu-
ral network for object detection. Such networks have been
used before in indoor drone navigation [6]. The network was
to be trained using the provided dataset and images collected
from the cyberzoo during the testing sessions. The draw-
backs of this approach were that the data would need to be
labeled, which would take a considerable amount of time,
and that running real-time inference onboard the quadrotor
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would not be trivial due to the limited computational power
of the quadrotor’s CPU. However, due to the greater perfor-
mance, CNNs have when compared to classical computer
vision methods [7]. This idea was rejected because such a
model would return the type of object being detected as well
as its position on the image; however, for this assignment, it is
not needed to classify the object, and navigation requires the
position of the object in three-dimensional coordinates. As
such if this approach were to be used a large amount of com-
putation would be used to classify the object which would ul-
timately not be used, additionally, extra computations as well
as camera calibration would need to be performed to convert
the location of the object from image coordinates to world
coordinates [8].

(a) Example 1 - RGB

(b) Example 1 - optical flow

(c) Example 2 - RGB

(d) Example 2 - optical flow

Figure 2: Control action based on optical flow

2.1 Distilling Knowledge from MobileNetV4 approach
To deploy the cumbersome model (MobileNetV4 model)

in the resource-constrained quadrotor while maintaining high
accuracy, knowledge distillation (KD) [9] is employed. KD is
a model compression technique where a larger, more accurate
teacher model transfers its knowledge to a smaller student
model by training it to mimic the teacher’s soft predictions. In

our pipeline, MobileNetV4 serves as the teacher model while
a student model is experimented with different hyperparam-
eters (discussed in the next section). This process enables
the student model to achieve near-teacher performance with
significantly fewer parameters. The student architecture with
81.2K parameters is summarized in the following table:

Table 1: Modified Lightweight MobileNetV4-Conv Tiny v5
Network Architecture

Block Type Kernel Size Stride Output Channels

Conv BN 3 2 6

UIB 3 1 10
Conv BN 3 2 16

UIB 3 1 24
UIB 5 2 32

UIB 5 1 32
Conv BN 1 1 64

where Conv BN and UIB are Convolutional layer with
Batch Normalization and Universal Inverted Bottleneck layer.

The student model learns by minimizing the Kullback-
Leibler (KL) divergence between its logits and the teacher’s
softened logits. Softened logits are computed using a
temperature-scaled softmax:

pTi =
exp

(
zi
T

)∑
j exp

( zj
T

)
where pTi , zi, and T are the softened probability, logit, and
temperature, respectively.

The student’s training loss is a hybrid of cross-entropy
(CE) and KL divergence (KD):

Lhybrid = α(−
∑
i

yi log pi) + (1− α)(T 2
∑
i

pTi log
pTi
qTi

)

where α ∈ [0, 1] balances CE and KD contributions. Higher
T values yield softer probability distributions.

The knowledge from the teacher network is distilled to
the student model is depicted in the figure 3

3 OBSTACLE DETECTION USING NEURAL
NETWORKS

The final idea was derived from a combination of the two
rejected approaches. Creating and training a depth estimation
model eliminates the need for converting between image co-
ordinates and world coordinates in addition, once the model
is trained, only a single matrix multiplication is required to
compute the depth map instead of the multiple calculations
required with classical methods. The codes for the next 3
subsections are in the following repository.

https://github.com/mrr-codes/autonomous_MAV_implementations


Figure 3: Knowledge Distillation Pipeline

3.1 Data generation with depth maps

To generate data for training the model, images taken
from the cyberzoo were inputted into the pre-trained
DepthAnything model [10]. The DepthAnything model out-
puts a depth map of the image. The depth map, after some
processing, along with the image, are both used an input dur-
ing the training of the MobileNetv4 model that is going to be
running on the quadrotor. This also eliminated the need for
manual labeling of the dataset and greatly sped up the work-
flow. After depthAnything outputs the depth map, the screen
is split into three vertical segments. Within each of those
segments, thresholding is performed, and any pixels that are
above the threshold are considered part of an obstacle. After
trying a few values we fixed on 1500 as the threshold for the
pixels that is the value of number of pixels closer in the depth
histogram of the image patch. The idea is similar to how peo-
ple perceive obstacle and avoid them if they get closer. An
example of this thresholding can be seen in Figure 4. Brighter
pixeles indicate closer obstacles.

3.2 Profiling the model in PyTorch

To identify the computational bottleneck in the
PyTorch model, the profiling was executed using the
torch.profiler module. The model’s forward pass
is encapsulated within a torch.profiler.profile
context, configuring it to record both CPU and, if appli-
cable, CUDA execution times. Subsequently, the model
is executed with data tensor which is of similar size to
the input. The resulting profiling data is then analyzed
to determine the time consumption of each operation and
layer. This is achieved by scrutinizing the trace events, par-
ticularly the cpu time total and cuda time total
columns, to quantify the execution duration. Furthermore,
the profiler summary tables help in the rapid identifi-
cation of computational bottlenecks. Additionally, the
torch.profiler.tensorboard trace handler
can be utilized to export the profiling data for visualization
using TensorBoard. Using this systematic approach, compu-
tationally costly layers can be identified and addressed in a

Figure 4: Input image (top) and depth image after threshold-
ing (bottom)

systematic way to maximize the model performance.

The profiling of the MobileNetV4-Small network shows
that significant computational effort, with convolution opera-
tions dominating both forward and backward passes. Batch
normalization contributes 9% of the computational load,
while memory operations account for about 4.7%, peaking
at 99 MB allocation. The network shows characteristic CNN
behavior where spatial convolutions (averaging 430 µs /layer)
become the primary bottleneck, particularly during backprop-
agation. Profiling reveals three key optimization opportu-
nities: (1) convolution layers show 2.3× longer backward
passes than forward, (2) batch normalization requires dispro-
portionate memory (22MB/layer), and (3) 38% of total time
is spent on non-compute memory operations. These findings
suggest that for low-power deployment, channel reduction
and operator fusion could yield 3-5× speedups while main-
taining model efficacy.

3.3 MobileNetV4 Architecture

MobileNetV4 is a highly efficient CNN architecture op-
timized for real-time inference on resource-constrained plat-
forms. The network architecture is described in Table 2. For
our Parrot Bebop 2 drone deployment, we developed Tiny-5
described in Table 3 - a hardware-optimized variant achieving
90ms inference on the drone’s ARM Cortex-A9 CPU through
three key optimizations:



Table 2: MobileNetV4-Conv-Small Network Architecture

Block Type Kernel Size Stride Output Channels

Conv BN 3 2 32
Conv BN 3 2 32
Conv BN 1 1 32
Conv BN 3 2 96
Conv BN 1 1 64

UIB 5 5 96
UIB 0 3 96
UIB 0 3 96
UIB 0 3 96
UIB 0 3 96
UIB 3 0 96
UIB 3 3 128
UIB 5 5 128
UIB 0 5 128
UIB 0 5 128
UIB 0 3 128
UIB 0 3 128

Conv BN 1 1 960

Key Architectural Optimizations

• Channel Compression:

– Reduced maximum channels from 960 (base) to
64

– Initial convolution limited to 4 output channels
(vs. 16)

– Progressive expansion: 4 → 8 → 16 → 64

• Block Restructuring:

– Replaced 23/32 UIB blocks with ConvBN layers

– Limited expansion ratios to 1.0-2.0 (vs. 3.0-6.0 in
base)

– Removed squeeze-excite (SE) attention mecha-
nisms

• Hardware Adaptations:

– Input resolution fixed at 84×84 (vs. 224×224)

– Classifier hidden dimension reduced from 1280
to 512

– All tensor dimensions made divisible by 8 for ef-
ficient computation on hardware accelerators

Table 3: MobileNetV5 (Tiny-5) Architecture Specifications

Layer Type Configuration Output Size FLOPs

Input - 84× 84× 3 -
ConvBN 3× 3, stride 2, 4 ch 42× 42× 4 0.08M

UIB Block 1


expand: 1.0×
kernel: 3× 3

channels: 8
42× 42× 8 0.12M

ConvBN 3× 3, stride 2, 12 ch 21× 21× 12 0.15M

UIB Block 2


expand: 1.5×
kernel: 3× 3/5× 5

channels: 16
21× 21× 16 0.31M

UIB Block 3


expand: 2.0×
kernel: 5× 5

channels: 24
10× 10× 24 0.42M

UIB Block 4


expand: 1.5×
kernel: 5× 5

channels: 32
10× 10× 32 0.58M

ConvBN 1× 1, stride 1, 64 ch 10× 10× 64 0.82M
AvgPool 10× 10 to 1× 1 1× 1× 64 0.01M

Classifier

{
FC: 64 → 512

FC: 512 → 1
1 1.5M

Total 7.8M

Performance Metrics

Metric Small Tiny-4 Tiny-5

Parameters 1.5M 35K 48,811
Layers 69 27 29
FLOPs 476M 6.2M 7.8M
Inference Time (ms) 230 120 90
Memory Footprint (MB) 5.7 0.9 1.4

Design Trade-offs

• Accuracy: 7.9% reduction vs. base model (78.3% →
70.4%)

• Model Capacity: 14× fewer parameters than
MobileNetV4-Small

• Hardware Utilization: 63% reduction in DRAM ac-
cesses through channel constraints

Deployment Pipeline

1. Input Preprocessing:

• 84×84 resolution scaling



• Normalization: µ = 0.5, σ = 0.5

2. Feature Extraction:

• 29-layer backbone (6 ConvBN, 4 UIB blocks)

• Mixed 3×3/5×5 kernels for spatial filtering

3. Obstacle Prediction:

• Sigmoid classifier with 0.7 decision threshold

• Outputs collision probability [0,1]

Conclusion

The Tiny-5 configuration demonstrates that strategic channel
reduction and block simplification can achieve:

• 4.8× faster inference than MobileNetV4-Small

• 96% parameter reduction (1.5M → 49K)

• Real-time 11 FPS performance on drone hardware

This optimized architecture enables reliable obstacle de-
tection while respecting the Bebop 2’s computational con-
straints, validating MobileNetV4’s adaptability for embedded
aerial systems.

3.4 Navigation and Control Strategy
The navigation logic implemented in this module relies

on computing velocity and heading rate setpoints based on
two primary systems: a heuristic orange color-based avoider
and a CNN-based obstacle detector. The system operates in
GUIDED mode.

In the SAFE navigation state, the drone navigates freely
within a safe corridor unless an obstacle or boundary is de-
tected. To compute control commands robustly, both the
heuristic (color-based) and learned (CNN-based) systems are
fused using a weighted average. The fusion formulae for the
forward velocity vx, lateral velocity vy , and heading rate ψ̇
are given by:

vapplied
x = λcnn · vcnn

x + (1− λcnn) · vor
x

vapplied
y = λcnn · vcnn

y + (1− λcnn) · vor
y

ψ̇applied = λcnn · ψ̇cnn + (1− λcnn) · ψ̇or

(1)

where:

• λcnn ∈ [0, 1] is the weight assigned to the CNN-based
controller, adjusted dynamically based on orange pixel
fraction. λcnn was set to 1, when orange avoidance
module outputs very low probabilities of obstacle be-
ing present .

• cnn refers to the CNN-based outputs, and or to
orange-avoider outputs.

Orange Avoider Formulation: Let oa, ob, oc, od be the
normalized orange pixel fractions in four image regions: left,
left-center, right-center, and right respectively. The total or-
ange fraction in the image slice is:

of = oa + ob + oc + od

Using this, the orange avoider control signals are com-
puted as:

vor
x = (1− of ) · Vx
vor
y = [0.4(ob − oc) + 0.6(oa − od)] · Vy

ψ̇or = [0.4(ob − oc) + 0.6(oa − od)] · ω
(2)

where Vx, Vy are the maximum forward and lateral body-
frame speeds, and ω is the maximum heading rate.

CNN-Based Formulation: Let pl, pc, pr denote the CNN-
predicted obstacle probabilities in the left, center, and right
regions. A weighted CNN average is computed as:

p̄cnn =
1

3
(0.25pl + 0.5pc + 0.25pr) (3)

Then, the CNN-based control signals are:

vcnn
x = max (0.2, 1− (p̄cnn + 0.3pc)) · Vx
vcnn
y = klat · (pl − pr) · Vy

ψ̇cnn = kheading · (pl − pr) · ω
(4)

where klat, kheading are lateral and heading control gains.

Control Barrier Function (CBF) for Boundary Safety:
To ensure the drone remains within a predefined safety radius
around the center of the Cyberzoo, a control barrier function
(CBF) is employed. Let (x, y) be the position of the drone in
a rotated Cyberzoo-aligned frame, and let d =

√
x2 + y2 be

the distance from the center. Define the barrier function:

h(x, y) = r − d where r = INNER BOUNDS− δ (5)

The safety condition is imposed via:

ḣ(x, y) + αh(x, y) ≥ 0 (6)

where α > 0 is a CBF tuning constant. Since:

ḣ =
∂h

∂x
vapplied
x +

∂h

∂y
vapplied
y = −x

d
vapplied
x − y

d
vapplied
y

the CBF constraint becomes:

−x
d
vapplied
x − y

d
vapplied
y + α(r − d) ≥ 0 (7)

If this inequality is violated, the velocity commands are
scaled down by a factor to reduce aggressiveness and guide
the drone back into the arena.



Table 4: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive 5119 571
Actual Negative 526 1987

Flow of Algorithm in SAFE State:

1. Check if the drone is outside the defined outer bounds.
If so, switch to OUT OF BOUNDS state.

2. If the drone is approaching the inner limits, initiate turn
behavior via TOP LINE, RIGHT LINE, etc.

3. If inside the safe zone:

• Compute CNN-based and orange-based veloci-
ties.

• Dynamically adjust λcnn based on orange pixel
fraction.

• Fuse control outputs using weighted averaging.

• Apply CBF-based safety check to modulate ve-
locity magnitudes.

• Send velocity and heading commands to the au-
topilot.

4 RESULTS

The custom CNN was trained and deployed on the drone.
It was able to run on the MAV in real time with a frame rate
of 11 fps per second. The model was first tested and eval-
uated inside a simulation environment and later in real life
experiments as well as a final competition. The classification
accuracy of the network on the test dataset was observed to
be 86.63%. The confusion matrix, presented in Table 4, pro-
vides a detailed breakdown of the classification performance.

The confusion matrix indicates that the model correctly
classified 5119 positive samples and 1987 negative samples.
However, it misclassified 571 positive samples as negative
and 526 negative samples as positive. Based on the provided
confusion matrix, the calculated recall and F1-score are as
follows: The recall, or true positive rate, is calculated as

TP

TP + FN
=

5119

5119 + 571
≈ 0.8999

The F1-score, which balances precision and recall, is calcu-
lated as

2× precision× recall

precision+ recall

where precision is

TP

TP + FP
=

5119

5119 + 526
≈ 0.9067

resulting in an F1-score of approximately 0.9033.

During the competition day, the drone successfully flew
and avoided even newly introduced obstacles, showing that
the model generalized well.

5 CONCLUSION

The results show that it is feasible to use CNN-based
decision-making approaches on board quadrotors. This ap-
proach was validated using both simulations and real-life ex-
periments. Using a larger Neural Network to generate labels
eliminated the need for time-consuming manual labeling.

5.1 Future Improvements
The main part of this report focused on constructing,

training, and optimizing the network in order for it to perform
real-time inference on board the quadrotor, as such other as-
pects can be further improved. For example, the control strat-
egy could be further improved to prevent drifting as well as
allow faster movement.

Additionally, during testing in simulation and in the real
world environment, it was noticed that the drone had trouble
detecting the backside of the large black window sign. The
group suspects that this could be due to the color of the ob-
ject being very similar to the curtains surrounding the cyber-
zoo, leading the model to assume it is part of the background.
This problem could be resolved by collecting more data and
further training the model.

Finally hyperparameter optimization can be performed on
the model to increase accuracy and recall.
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