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Welcome to the MDP

Dear students, we are excited to welcome you to the Multi-disciplinary project 2025! The MDP is the
finishing milestone of your first year, allowing you to bring the theory that you have learned during the
first year into practice and giving you time to reflect on your specialization and second year. In this
project, you will be a member of a 5-person development team for the fictitious consultancy firm MDP
Inc., a Robotics consultancy firm of the Department of Cognitive Robotics that provides initial innovative
robot solutions to their clients. Our new client, the United Nations, has tasked MDP Inc. to provide robot
solutions to their real-world problem. Each team from MDP Inc. will be working on creating a unique
solution to solve this problem. During the development, the teams will be supported by the MDP staff,
be provided with a mobile robot innovation platform, MIRTE Master, and a flexible workspace has been
reserved for each team; please have a look at Brightspace to find more information.

Learning outcomes of the MDP

The MDP is a unique course that focuses on developing your practical skills as well as providing you
with space to grow personally. These skills are detrimental for your career after graduation, but also for
the final part of your study. The learning objectives for this course are divided over two domains (see
also description in TU Delft Study Guide):

1) Knowledge, insight, judgment and skills: By the end of the course, you should be able to:

LO 1.1: Define a robotics use case with its functional and non-functional requirements.

LO 1.2: Design robotic solutions by integrating knowledge of system engineering, current opportuni-
ties for robots, trends in robotics, and societal aspects.

LO 1.3: Produce a robotic solution that meets the design specifications and considers sustainable,
safety, ethical, economical and other relevant societal aspects.

LO 1.4: Use functional architecture for planning and communicating robot software.

LO 1.5: Communicate the multidisciplinary robot solution orally, in writing, and in code documentation
according to robot software development guidelines.

2) Transferable and interpersonal skills: By the end of the course, you should be able to:
LO 2.1: Formulate learning goals for your own personal development.

LO 2.2: Reflect on your competencies (e.g., Teamwork, Leadership, Entrepreneurial thinking, Strate-
gic multidisciplinary problem-solving), their development, and your personal learning goals.

LO 2.3: Apply structured feedback to improve your performance or the performance of others.

LO 2.4: Apply structured multidisciplinary software project management, with the use of different team
roles and responsibilities.

Overview of the MDP

The project consists of 5 phases as seen in Table 1 below. In each phase, you will have a set of
activities to complete and report on them at the end of each phase. As a team, you will analyze the
client’s problem and provide a solution to it and present that to the client during the project. After
organizing yourself as a team, you will analyze the client’'s problem and formalize it together with its
requirements and how you are planning to address it. You will first design and build something very
simple (that works), and over time work from here to get to your final project goal. In the MDP, you
will likely work both in simulation and with MIRTE Master, and present your final results to our client,



Table 1: MDP overview with different phases.

Weeks Phase Main activities

3.8-3.9 0 Project preparations Attend introduction, Meet your team, get to know the
assignment, ROS install, and GitLab check

4.1 1 Initiation & Planning Getting organized and planning of your project

4.2-43 2 System design Initial system design and realization

44-46 3 Implementation & validation Further design, implementation and robot testing

4.7-4.8 4 Project completion Finalizing your project and final reporting

including a demonstration. During your project, you will be writing a report using the fixed template
that you are reading at this moment. We co-designed the template with industry partners to mimic
common elements that development teams have to report, e.g., used for certification of the robot. In
each phase, you will complete the content of the required chapters and submit it before the phase’s
deadline. The teaching team will provide you with feedback on the completed chapters. We recommend
you to incorporate this feedback in the final version of the report.

In addition, following on from the RO47000 Vision and Reflection course, you will be working on a
personal reflection assignment throughout the project. Besides developing your practical robot skills,
you will grow personally during the project, e.g., managing a team, presenting your ideas or realizing
your strengths. This personal growth will be detrimental to your future career and also the last part
of your study, e.g., which topic suits you best for your master thesis. You will individually report your
reflection in a separate assignment twice, at the beginning and at the end of the project. For the
reflection, you will work with the MDP reflection template that works similarly to this report template.

Learning material

We have invited you to our Brightspace course page that contains all required information on the MDP.
Here, you will find the two required templates, for the main report and for the reflection. To support your
development throughout the MDP, we have created various self-learning videos, e.g., how to create
Gantt charts or how to use your MIRTE Master robot. We recommend you to watch the videos together
with your group and discuss the content and how to apply it to your work. We will have selected in-
person workshops to discuss the content together, e.g., a systems engineering session to discuss
formal system design principles.

Interaction and questions

The MDP is a highly interactive project-based course. You are required to closely work with your fellow
group members to realize your robot solution for the client. On top of this, you will likely encounter gen-
eral problems on software, using the MIRTE Master, working with ROS or similar. During the scheduled
group working sessions, we encourage you to work together with your team but also to interact with
other teams on common problems. The MDP is not a competitive course and will give you the oppor-
tunity to collaborate between teams as you will likely encounter later on in your professional life. We
have also created a discussion forum on Brightspace that you should use to discuss questions that are
relevant for other groups. Important: The MDP teaching team will not answer any of such general-
interest questions received via mail. Please post those questions on Brightspace so that everyone can
see them and participate in the discussion.

Working style

The success of your project depends heavily on your group’s working style. Every member will need
to contribute to your project. In the beginning of the MDP, we recommend you to sit down and discuss
and plan how you want to work together as a group (this will also be part of your reflection deliverable).
For instance, you can start with questions such as: when do you want to meet? how do you want to
communicate within the group? how do you organize the group? what kind of team rules do you want to
apply? Non negotiable is that you treat everyone in your group with respect and follow the TU Delft Code
of Conduct. The MDP teaching team does not tolerate discrimination, harassment, uncomfortable and
unacceptable behaviors or similar. If you encounter such situations (personally or from other teams),



please do not hesitate to contact the MDP teaching team; we will treat the conversation anonymously.

The MDP is a highly collaborative and time-intensive course. Given the course’s 5 credits, you are
expected to commit around 18 hours per week to your project. Make sure to properly plan your schedule
and properly communicate with your group. Itis your group’s freedom but also responsibility to organize
yourselves and find the best working style on your own.

Deadlines and assessment

All deadlines and deliverables are summarized on Brightspace. Important: continuously consult the
MDP’s Brightspace page for the latest information on deadlines and deliverables. Please note that
deadlines are final and no extensions will be given to individual groups.

The assessment in the MDP is two-fold. We apply knock-out criteria that you need to fulfill to complete
the course but you will not receive a grade for. These include actively participating in all mandatory
sessions and presentations (mid and final presentations), submitting all required deliverables on time,
and participating in the buddy check.

The final grade is based on your end report, your final presentation and robot demonstration, as well
as your final reflection report. We apply specific grading rubrics to determine your grade. You can find
the rubrics that we use for assessment on Brightspace. We encourage you to read the rubrics and
discuss questions with the MDP teaching team during one of the group-staff sessions. We would like
to emphasize that grades are not assigned per group, but per individual student. For this reason, we
require you to specify who did what in your deliverables. Thus, you should also distribute the workload
fairly among your fellow group members.

Working principles of this document

This document contains the structure of your main report in which you describe the development of
your robot solution to the client. The content of the document is inspired by company practices you will
likely encounter in your professional life later on. Each chapter in this report corresponds to a specific
development phase in the MDP and requires you to focus on a specific part of your robot solution, e.g.,
the formal system design or the validation. Thus, in each phase, you and your group will complete
the required chapter and submit the document on time on the specified deadline. Important: You don’t
have to complete chapters that are required at later deadlines.

Each of the chapters has a fixed structure that you need to adhere to. We have put instruction text
in blue to describe what your group is required to fill in each of the chapters/sections. Carefully read
the instructions and remove them before filling your sections. Important: make sure to adhere to the
instructions, they are there to help you and to focus on what specifically you need to report, e.g., when
we ask you to highlight 3 examples, please only provide 3 examples. Similarly, figure placeholders
serve as examples and should be replaced with actual figures. Before submitting your report, make
sure to proofread and spell-check your document. You also need to stick to the required page limits
and are not allowed to modify the template (e.g., font colors, font sizes, etc.). Submitted reports that do
not stick to the requirements, e.g., not using the official font, will be desk-rejected. For the assessment,
we would like you to specify who wrote which section in the document. Therefor, please add the names
of the authors at the end of the corresponding sections.

Policy on use of generative Al

You are allowed to use generative Al tools (like ChatGPT or GitHub Copilot) to help with your work
in this course. However, you must clearly mark any part of your project that was created with Al. For
each use, explain why you used it, how you used it (e.g., what kind of prompts or tasks), and how you
verified that the result works as intended. Use Al to support your learning — not to skip it. Be honest
and reflective in your use.

Change log

Sometimes, your work in later chapters influences content that you have written earlier. You are allowed
to make changes to earlier sections. To help us assess your current section and provide valuable
feedback, we would like you to color the changes in the color tudelft-warm-purple available in this



vi

template for easier reference for us. Moreover, please refer in your later chapters to the changes so
that we are aware and have a look at them.



Vi

Last but not least, we wish you a successful MDP and a lot of fun developing your solution and
growing personally. The 8 weeks will be filled with a lot of ups as well as some minor downs. Together
as a team, you can navigate these challenges and come up with creative solutions to those
challenges. We are very much looking forward to what you will create during this year’s MDP!

Your MDP Teaching Team
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Abstract

To support small-scale apple farmers facing labor shortages, this project aimed to develop an affordable
autonomous apple-picking robot aligned with UN Sustainable Development Goal 2 (Zero Hunger). The
proposed solution uses the MIRTE Master platform equipped with a modular design, LiDAR, camera
and sonar sensors. The robot autonomously maps its environment, navigates safely to trees, detects
ripe apples, and performs grasping and placing actions using a robotic arm. Object detection and SLAM
algorithms were implemented alongside planning and control methods such as MPPI. Validation tests
confirmed the robot’s ability to classify apples, localize objects, avoid obstacles, and communicate with
users via a GUI. While limitations remain due to hardware malfunctions and integration time constraints,
the core functionalities proved effective. The solution demonstrates the feasibility of a cost-effective
and semi-autonomous harvesting system tailored to small-scale farms, offering a promising step toward
more sustainable and accessible agricultural automation. (Termote)

A. Kourris, D. Kritharoulas, M. Saravanan, N. Termote, T.J. van der Weij
November 19, 2025






Start of the Project

1.1. Meet the team - Everyone

Dentro:
P Hello, we are team Dentro! (pronounced as /den.dro/; meaning
&3 tree) We are a group of passionate robotics students aiming to take
robots out of research labs and factory production lines and into
real-world agricultural applications.

dentro

Nils Termote:

My name is Nils. | am 24 years old and | am from the Netherlands.
In this project | will be focusing on the machine perception aspect
of our solution and | will be mostly working together with Tjerk. 1 will
personally focus on creating packages for orchard and apple local-
ization while also being responsible for the structure of our weekly
meetings by creating meeting agendas and serving as the chair-
man.

Antreas Kourris:

My name is Antreas. | am 23 years old and | come from Nicosia,
Cyprus. | will be working on the pathfinding and controls aspects of
the project. My main goal is to ensure that the robot can navigate
in the field safely, reliably, and optimally. Aside from my technical
responsibilities, | am also responsible for organizing our file-sharing
and task management platforms.

Dionysios Kritharoulas:

My name is Dionysios. | am 25 years old and come from Athens,
Greece. My main role is focused on the Human-Robot Interaction
(HRI) aspect of the project. | will work on implementing a GUI that
farmers can use on their phones or laptops to receive valuable in-
formation about the robot’s status and mission. Moreover, | will
aim to enable the robot to interact with the user (e.g., through ges-
ture recognition or buttons in the GUI) and respond appropriately
to their commands. Aside from my technical responsibilities, | will
also be responsible for code review and documentation on GitLab.
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Mukil Saravanan:

I am Mukil Saravanan, an enthusiastic robotics student from India.
In this project, | will be investigating different control strategies, in-
cluding designing and evaluating Non-linear Model Predictive Con-
troller (NMPC) and Model Predictive Path Integral (MPPI) for the
mobile manipulator. These target optimally navigating amidst ob-
stacles in the presence of uncertainty while ensuring robustness.
Furthermore, | am responsible for keeping track of the deadlines of
all the deliverables throughout the journey.

Tjerk van der Weij:

My name is Tjerk and | am a 25-year-old student from The Nether-
lands. | will be focusing on the Machine Perception side of this
project together with Nils. My responsibilities lie in data process-
ing and visualization of the whole sensor suite. Also, | will work on
creating and training an effective computer vision model to detect
the tree, basket, and differentiate between ripe and unripe apples.
Next to the technical part, | will be responsible for proofreading and
spellchecking the report before submission.

1.2. Ways of working

As a team we have agreed to meet at the project tables on Tuesday, Wednesday, and Thursday from
8:45 to 12:45 as minimum, making exceptions if a team member has other obligations like lectures at
that time. If more time is needed, we have decided to meet at different times during the week. Task
delegation was split up as discussed in section 1.1. Nils and Tjerk are working mainly on perception,
Antreas and Mukil are working on the path planning and control, and finally Dionysios is working on the
Human Robot Interaction aspect of the project. For online communication, we are using WhatsApp,
which enables quick communication. Code sharing and collaboration will be done through GitLab. We
have a Microsoft Teams Channel to share and store non-code files. Finally, through Teams, we use
the integrated Microsoft Planner to keep track of pending tasks that need to be completed. (Kourris)

1.3. Problem definition

Our client is the United Nations which is an international organization founded in 1945 to promote
peace, security, human rights, and development across the globe. Our client wants us to focus on
SDG 2 (Zero Hunger) [1] to end hunger, achieve food security, improve nutrition, and promote sustain-
able agriculture. The goal emphasizes that everyone has access to sufficient and nutritious food all
year round, especially vulnerable populations. It also supports small-scale farmers, equitable access to
land, technology, and markets, and resilient agricultural practices that adapt to climate change and pro-
tect ecosystems. Small-scale farmers face labor shortages [4] and challenging working conditions [2]
which makes it difficult to harvest their apples and compete with large agricultural companies. Current
automation solutions can cost up to $500000 per unit [3], which a too high investments for small-scale
farmers. (Termote)

1.4. Proposed solution

Practically, our task is to program a robot that can pick ripe apples on command, place them in our
selling basket, and provide updates on our orchard and harvest. Our goal is to address labor shortages
and difficult working conditions by developing an autonomous robot capable of operating for extended
periods. Also, the robot needs to be a cost-effective solution to stay within the budget of small-scale
farmers. Therefore our solution consists of a modular system with easy replaceable 3D printed parts,
and open-source software allowing for low cost maintenance. The MIRTE Master robot uses a SLAM
algorithm to map its environment and localize itself within it. Obstacles in the map are identified using
a LiDAR sensor, while a camera sensor, combined with object detection models, is used to locate and
classify trees, apples, and the selling basket. The robot can pick up several apples at a time and place
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it in its carrying basket. The robot navigates to a tree using planning and control algorithms, where
it employs an object detection model to distinguish ripe from unripe apples. The coordinates of ripe
apples are then used to guide the robot’s gripper for picking. Afterward, the robot moves to the basket
and gently drops the apples inside the selling basket. Ultrasonic sensors detect nearby moving objects,
such as humans and other animals, and integrate this information into the motion planning to ensure
safe navigation. Two graphical interfaces are provided: one for the farmer, showing a global map, task
progress, error messages, battery status, and start/stop controls; and a more technical interface for
developers, featuring depth maps, detailed error reports, full robot state, and sensor visualizations for
performance evaluation. (Van der Weij)

1.5. Requirements

In this section, we describe all the requirements that our proposed solution should meet. We divide the
requirements into two categories: mandatory and optional. The mandatory requirements are neces-
sary for the robot to operate, while the optional requirements provide additional benefits for the client.
(Kritharoulas)

1.5.1. Mandatory requirements

As part of the mandatory requirements, the robot should be able to map its surroundings and localize
itself. It must also be capable of detecting trees and potential obstacles. Furthermore, it should navigate
towards the tree or basket while avoiding the static obstacles. If it detects a farmer or an animal on
its way, it has to slow down and give them priority. Another crucial thing is to be able to distinguish
between ripe and unripe apples, move its arm towards a selected apple, and grasp it using the gripper.
Finally, it should be able to drop an already grasped apple into the basket. Regarding human-robot
interaction, the robot must be able to communicate its location on the map and its sensor data in a
visually friendly manner to the farmer. Additionally, frequent updates about the robot’s mission status
(e.g., whether the mission has been completed successfully) should be communicated to the farmer.
Finally, when the robot attempts to grasp an apple, it should be able to detect if a human hand or an
animal is nearby and stop its motion to ensure safety. For a list of mandatory requirements, see Table
1.2. (Kritharoulas)

Reference Short description Specialization

MR1 Map and localize Planning, Per-
ception

MR2 Recognize and locate tree and obstacles Perception

MR3 Navigate towards tree/basket while avoiding obstacles Planning

MR4 Detect any farmers or animals in the robot’s path Perception,
HRI

MR5 Slow down and give priority to farmers/animals if they are detected Planning,HRI

MRG6 Discriminate between ripe and unripe apples Perception

MR7 Grasp ripe apples Planning

MR8 Drop apples to the basket Planning

MR9 Communicate robot’s location, sensor data and mission status to HRI

the farmer
MR10 Detect human hand or animal when trying to grasp an apple and HRI

stop arm’s motion

Table 1.2: List of mandatory requirements in this project (Kritharoulas)

1.5.2. Optional requirements

The robot can also be designed to navigate towards the tree/basket in a way that minimizes battery
usage. For the apple-grasping task, a more intelligent behavior involves the robot aiming to grasp the
apple that requires the least amount of effort in terms of joint torque. Another optional requirement is
to incorporate a failure recovery mechanism that clears the constructed map and restarts the mapping
and localization process when the robot gets stuck. Regarding the human-robot interaction aspect, the
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robot can be able to communicate information to the farmer regarding its battery level and the number
of ripe apples it has successfully placed in the basket. Additionally, it can detect the farmer’s hand
gestures indicating whether the robot should stop or approach, or receive start/stop commands from
the farmer through a web-interface. For a list of the optional requirements, see Table 1.3 (Kritharoulas).

Reference Short description Specialization
OR1 Minimize battery usage while navigating Planning

OR2 Grasp the ripe apple that minimizes total joint torque Planning

OR3 Clear map and restart when robot gets stuck Planning

OR4 Follow start/stop farmer commands through a web-interface HRI

OR5 Communicate information to the farmer regarding battery leveland HRI

number of apples in the basket
OR6 Detect farmer start/stop hand gestures and comply accordingly Perception,HRI

Table 1.3: List of optional requirements in this project (Kritharoulas)

1.6. Project plan

S 2028
~ Name Begin date End date Resources T oo = =

Phase 1 4/21/25  4/25/25

Phase 2 4/28/25 5/8/25
Local Path Planner 4/28/25 5/8/25

Analytical Robot Model 4/28/25 5/5/25 Mukil
MPC Prototyping 4/28/25  5/1/25 Antreas
Manipulator Controller 5/6/25 5/8/25
RRT* 4/28/25  4/30/25 Antreas
Dataset Creation 4/28/25  4/30/25 Nils,Tjerk
Interface with all sensors 4/28/25 4/30/25
Perception Protoyping 5/1/25  5/1/25 Nils,Tjerk
GUI Design 4/29/25 5/7/25 Dionysios
List user requirements 4/29/25  4/29/25 Dionysios
Create React S front end 4/30/25 5/6/25 Dionysios
Intergrate with ROS2 5/7/25 5/7/25 Dionysios
Reseach on SLAM 4/28/25 5/8/25 Antreas,Mukil Nils, Tjerk,Dionysios
Report Writing 4/28/25 5/7/25 Antreas,Mukil Nils, Tjerk,Dionysios
Client Presentation 5/8/25 5/8/25
Report 2 due 5/8/25 5/8/25
Buddycheck 1 due 5/9/25 5/9/25 *

Phase 3 5/13/25 6/4/25

Global Path Following 5/13/25 6/4/25 Antreas,Mukil 1 “
Waypoint generation 5/13/25  5/16/25 Antreas o e
Controller for robot base in ROS2 5/13/25  5/15/25 Mukil I =
Mobile Manipulator Controller 5/19/25  5/23/25 Antreas,Mukil -
Dynamic Obstacle Avoidance 5/29/25 6/4/25 Antreas,Mukil ‘#:I
Detect Objects 5/13/25 5/21/25 Nils, Tjerk
Train object detection model 5/13/25 5/16/25 Tjerk i
Intergrate Model with ROS2 5/19/25 5/21/25 Tjerk [
SLAM 5/22/25  5/29/25 Nils 1
Sensor Fusion 5/22/25  5/29/25 Nils,Tjerk [::jl
User GUI 5/23/25  5/29/25 Antreas,Dionysios  ——
Human / Animal Detection 5/13/25 5/28/25 Dionysios 1
Dataset Augmentation 5/13/25 5/13/25 Dionysios bﬂj
Vision Model Training 5/14/25  5/14/25 Dionysios l
Integration with ROS2 5/15/25 5/28/25 Dionysios | —
Navigation with Static Obstacles 5/26/25 5/26/25
Navigation with Dynamic Obstacles 6/5/25 6/5/25
Complete Navigation and Mapping 6/5/25  6/5/25
Report 3 due 5/14/25 5/14/25 *
Gitlab Documentation due for review 5/14/25 5/14/25 *
Buddycheck 2 Due 5/14/25 5/14/25 *

Phase 4 6/5/25 6/17/25 P—
Prepare Presentation 6/5/25  6/13/25 Antreas,Mukil Nils, Tjerk,Dionysios —
Report Writing 6/5/25 6/17/25 Antreas,Mukil Nils, Tjerk,Dionysios —
Testing and evaluation 6/5/25 6/13/25 Antreas,Mukil Nils, Tjerk,Dionysios 1
Documentation Feedback due 6/6/25 6/6/25 *

Final Presentation 6/16/25  6/16/25

Final Report due 6/18/25 6/18/25

Final GitLab documentation due 6/16/25 6/16/25 *
Individual Reflection Report due 6/17/25 6/17/25 *

Figure 1.1: Gantt chart of the project (Kourris)

The Gantt chart can be seen in Figure 1.1. The color coding of the Gantt chart is as follows:

means group brainstorming or research, Purple is for report writing and documentation, is for
path planning and controls, Blue for perception, for human-robot interaction and finally Black
represents milestones. (Kourris & Saravanan)



Functional Architecture

2.1. Functional hierarchy

bdd [Activity Block] Agricultural Robotic Application [Functional Architecture] <<activity=>
Agricultural Robotic Application
F1 F2 F3 F4 F5
<<activity>> <<activity>> <<aclivity>> <<activity>> Z<activity=>
Communicate with User Sense Environment Navigate Safely Control Arm Locate Apples
’ ’ F31 ? Fa1 ,
<<activity>> <<activity==
Generate Global Path Actuate Gripper
F2.1
<<aciviy=> Faz
Locate Objects < F32
Fi1 iy <<activity>> o
i <<activity>> Generate Arm Trajecto g
| <<activity>> Get Robot State ooy
Display Information ‘ <<activity>>
F22 Detect apples
<<aciivity>»
Build Environment Ma| F33 F43
F12 Ple—r
— <<activity>> <<aclivity>>
<<activity>> B
Read Mission Status Follow Path Follow Trajectory
F23 F5.2
<<aciivity>> <<activity>>
Classify Objects — F34 Fa4 Class ripe/unripe apples
s =<aciviy>>
Wait for to pass| Count apples
F15 F45
<<activity>> <<activity>>
Comply to startistop gestures | Check for hands

Figure 2.1: Functional hierarchy of the system (Kritharoulas)

The first level of the functional architecture consists of five main functions. F1 includes all the activities
required for the robot to communicate with the user, which in this case is the farmer. F2 refers to all
tasks related to environment sensing using the available sensors on the robot. F3 encompasses the
activities necessary for the robot to navigate safely from a given point A to point B. F4 refers to the
control of the arm and finally, F5 includes all the functions that enable the robot to locate apples within
the scene. See Figure 2.1 for an overview.

One level lower, there are two subfunctions related to communication with the user. Specifically, F1.1
computes the information on robot location, state and battery percentage that is displayed to the user,
while F1.2 refers to how the robot keeps track of the mission status. These two functions both relate
to the requirement MR10 as described in Section 1.5. Regarding environment sensing, F2.1 refers to
the robot’s ability to detect objects in the scene. By ’objects’, we mean anything that may be present
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8 2. Functional Architecture

in the environment, including trees, baskets, static and dynamic obstacles, as well as humans and
animals moving around. This function fulfills requirements MR2 and MR4 as stated in Section 1.5.
F2.2 refers to the process of building a map of the environment which the robot can use to localize itself
and navigate to its goal and fulfills requirement MR1. F2.3 corresponds to assigning one of the three
classes (red apple, green apple or tree) to a detection, which can be assigned to the requirements MR2
and MR6. Regarding safe navigation, five main subfunctions are considered. F3.1 is responsible for
generating the global path on the map from start to end, while F3.2 handles extracting the robot’s state,
including its x and y coordinates and orientation. F3.3 refers to the local planner, which is responsible
for following the previously generated global path, while F3.4 is responsible for slowing down the robot
and prioritizing potential humans or animals that are detected and may block the robot's movement.
Finally, F3.5 refers to the robot’s ability to start or stop based on the farmer’s hand gestures, giving
priority to its intention instead of focusing solely on navigating toward the goal. All the subfunctions of
F4 are fulfilling the requirement with reference MR5. For the arm control part, F4.1 is responsible for
actuating the gripper, which means either opening or closing the gripper to grasp an apple, and relates
to requirement MR7. The function F4.2 generates an arm trajectory from the base to the apple that must
be grasped, and F4.3 implements the controller that follows that trajectory. These two functions also
fulfill, together with F4.1, requirement MR7 and MR8 of grasping and dropping the apples in the basket.
F4.4 is responsible for counting the number of ripe apples still attached to the tree which is associated
to requirement MR9 and specifically sharing the mission status. F4.5 is responsible for detecting any
human hands near the apples through the gripper’s camera. Finally, regarding apple localization, F5.1
is responsible for detecting the apples on the tree, while F5.2 is responsible for classifying them as ripe
or unripe. Both of these function refer to requirement MR6. (Kritharoulas & Van der Weij)

2.2. N2 chart of your system
See Table 2.1 for the N2 chart of our system. (Van der Weij)

Table 2.1: N2 chart of our proposed robotic system (Van der Weij)
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2.3. Functional Flow of your system

See Figure 2.2 for the Functional Flow of our system. Please note that this loop is only for picking up
and delivering one apple. (Kourris)
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Figure 2.2: Functional Flow Chart for our proposed robotic system (Kourris)






Description of the Robot Software

3.1. Nodes Overview

In this chapter an overview of our physical system will be given. Figure 3.1 shows the main data flows
and connections between all nodes and Figure 3.2 shows all functions allocated to all nodes. (Termote)

perception_package planning_control_package

:robot_state_publisher :slam_toolbox_node imap

Jdynamic_obstacles

“lidar iscan :tree_localization_node :base_planner_node Imator_inputs wheel_motors
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farm_detected )
igesture_detection
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[ :human_robot_gui | [ :arm_detector_node | [ :gesture detection node |
fcamerafimage_raw

Figure 3.1: SysML Internal Block Diagram of our proposed system (Termote)
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12 3. Description of the Robot Software

3.2. Design choices

An overview of the nodes and how they correspond to the different functions can be seen in Figure 3.3
(Kourris).

3.2.1. F1 Communicate with user

Both sub-functions of this module are allocated to the human_robot_gui_node. This node is responsible
for reading the robot’s state, including position, map, apple count, and sensor data, and presenting this
information to the user in real time. Assigning these functions to a dedicated GUI node ensures a
clear separation between user interaction and autonomous behaviors, which improves modularity and
supports system usability.

Requirements addressed: MR9 (Communicate robot’s location, sensor data, and mission status to
the farmer) (Kourris & Kritharoulas)

3.2.2. F2 Sense Environment

The tree_localization_node identifies and determines the position of trees within the robot’s surround-
ings. It integrates image data from the base camera with LIiDAR point cloud information to precisely
locate tree trunks in space. This function is handled by a dedicated node to keep tree detection separate
from other perception tasks, ensuring cleaner communication interfaces and a modular system design.
Accurate tree positioning is crucial for subsequent processes like mapping, planning, and apple detec-
tion, making this node a fundamental component of the perception pipeline. The slam_toolbox_node is
responsible for real-time SLAM, creating and updating a global environmental map that includes static
obstacles such as trees and walls. By assigning this task to an independent node, the mapping process
remains distinct from other operations like control and object recognition, improving system stability and
maintainability. This design allows the map to be updated autonomously as the robot navigates, en-
suring a consistent global reference for navigation and localization functions. Together, these nodes
enhance the robot’s environmental awareness, a key requirement for safe and autonomous operation.
Their structured allocation highlights a focus on modular development and functional separation.
Requirements Addressed: MR1 (Map and localize), MR2 (Recognize and locate tree and obstacles)
(Kourris & Termote & Saravanan)

3.2.3. F3 Navigate Safely

To ensure safe and autonomous navigation, the base_planner_node manages both local and global
path planning. This node integrates the necessary planning functions for the robot to determine and
follow viable paths through its environment while avoiding static and dynamic obstacles. Centralized
planning logic with a single node allows for a clear separation between navigation, perception, and
control components. This architectural approach promotes modularity and simplifies future updates to
planning algorithms. The global planner computes a collision-free route from the robot’s current posi-
tion to its target destination, factoring in static elements from the mapped environment. Meanwhile, the
local planner enhances real-time adaptability by continuously adjusting the path in response to moving
obstacles and environmental changes. By integrating both planning layers within the same node, the
system optimizes their coordination, improving responsiveness and reliability during operation. This
structured design supports the robot’s need for safe, efficient, and adaptable navigation in dynamic
environments.

Requirements Addressed: MR3 (Navigate towards tree/basket while avoiding obstacles), MR5 (Slow-
down and give priority to farmers/animals if they are detected) (Kourris & Saravanan)

3.2.4. F4 Control Arm

Once the robot’s base reaches its target location, it must interact with its environment to carry out
the task of apple picking. The arm_controller_node is responsible for this functionality, generating
and executing motion trajectories for the robotic arm, actuating the gripper, and tracking the num-
ber of apples successfully picked. Target positions are received from the navigation or perception
systems, and the node calculates and executes the necessary movements for grasping. This node
integrates all manipulation-related functions into a dedicated component, ensuring modular control in-
dependent from navigation and perception logic. Additionally, the node handles state updates, such
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as apple count, which are shared with the GUI to keep the user informed about task progress. The
hand_gesture_detection_node detects if a person’s hand is also reaching the same apple. If a hand is
detected, the robot stops, allowing the person to safely interact within the robot’s environment.

Centralizing all manipulation tasks within the arm_controller_node simplifies coordination across plan-
ning, motion execution, and feedback monitoring, while ensuring consistent and predictable computa-
tional load.

Requirements Addressed: MR7 (Grasp ripe apples) MR8 (Drop apples to the basket), MR10 (Detect
human hand or animal when trying to grasp an apple and stop the arm’s motion) (Kourris)

3.2.5. F5 Locate Apples

The detection and localization of apples are managed by two specialized nodes: apple_localization_node
and gripper_camera_node. The apple_localization _node identifies ripe and unripe apples utilizing RGB
images and determines their three-dimensional positions by integrating image-space detections with
depth data from the primary camera. This process enables the robot to accurately select apples for
grasping. Upon approaching a designated apple, control is transferred to the gripper_camera_node,
which processes images from a monocular camera attached near the gripper. This refinement ensures
precise localization, facilitating accurate end-effector positioning during the final grasping phase.

By employing both a wide-field depth camera for comprehensive environmental awareness and a close-
range monocular camera for fine-grained localization, the system achieves an optimal balance between
global detection and precision. The division of responsibilities across distinct nodes promotes modu-
larity and simplifies the design, configuration, and optimization of each detection stage.
Requirements Addressed: MR6 (Discriminate between ripe and unripe apples) (Kourris)
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Figure 3.3: Table of functions and corresponding nodes (Kourris)






Validation of the Robotic Solution

4.1. Test procedures

In Table 4.1 the tests performed in this project can be found (Kourris & Saravanan).

Reference Short description Function

T1 Build a map of the environment F2.2

T2 Classify trees, ripe and unripe apples F2.3,F5.2

T3 Estimate position of objects in the environment F2.1

T4 Move robot base to a specific location on the map F3.1,F3.2,F3.3
T5 Avoid dynamic and static obstacles F3.4

T6 Move end effector to specific position and orientation F4.2, F4.3

T7 Stop the manipulator from colliding with a human F4.5

T8 Grab apples and place them in the basket of the robot F4.1

T9 Detect farmer’s start/stop hand gestures and comply accordingly F3.5

Table 4.1: List of conducted tests in this project (Kourris & Saravanan)

4.1.1. Test T1: Build a map of the environment

We tested the F2.2 function. Maps were created both autonomously and using tele-operation to control
the robot. Mapping was tested both in the demo arena and in larger areas. The aim was to see if the
mapping algorithm could correctly capture all the static obstacles. The maps were accurate, and in
autonomous mode, the robot did not collide with any objects. Autonomous exploration was also tested
in different areas. The aim was to observe whether the robot could map the closed environment in finite
time. (Kourris & Saravanan)

4.1.2. Test T2: Classify trees, ripe and unripe apples

We tested functions F2.3 and F5.2. The object detection model was initially tested on a subset of the
dataset that was not used for training, and then on the actual cameras. These tests were performed
under varying distances and lighting conditions. The aim was to see how accurately and robustly the
model could classify the objects. Multiple numerical evaluations (like bounding box regression loss,
classification loss and mAP50 score) were performed to check the efficiency of classifications. Visual
model evaluation can be found in Appendix A. (Kourris & Saravanan & Van der Weij)

4.1.3. Test T3: Estimate position of objects in the environment

We tested the function F2.1. The tree localization node was tested at different robot positions and
orientations such that the tree is in the field of the camera. Within the detected tree, 3D positions of a
ripe apple was cross-checked manually with a measuring tape. The aim was to evaluate whether the
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18 4. Validation of the Robotic Solution

localization algorithm could locate the tree and the red apple precisely. (Saravanan)

4.1.4. Test T4: Move robot base to a specific location on the map

We tested functions F3.1, F3.2 and F3.3. The map server node was tested to check whether the
mapped environment (Occupancy Grid Map) was loaded properly in RViz. Once the map is loaded,
the Adaptive Monte Carlo Localization (AMCL) node checks whether the robot can localize itself within
the map. It does this by observing the introduction of local costmaps, global costmaps and AMCL
particles in RViz. Sometimes, the initial location of the robot with respect to the map frame was manually
provided. When a 2D navigation goal is provided by the user, the global and local paths generated by
the planner are evaluated for path completeness. Eventually, the location of the robot is checked with
the provided goal location for minimal localization error. The robot could reach the goal position within
a reasonable error bound. (Saravanan)

4.1.5. Test T5: Avoid dynamic and static obstacles

We tested the function F3.4. Once the 2D navigation goal is provided either manually or computed
autonomously from the detected tree location, the following was observed. At first, the global and local
costmaps were observed such that the robot does not go inside inflated obstacle configurations. It
is to be noted that the global costmap is used for avoiding static obstacles that are already mapped,
while the local costmap is used for avoiding dynamic obstacles in the environment. This is done by
checking whether the current sensor readings are reflected in the local costmap as the robot moves
in the environment. Subsequently, global and local paths were evaluated for non-collision with static
and dynamic obstacles, respectively. Experimenting with different environments (for static obstacles)
and slow-walking humans (for dynamic obstacles) resulted in collision-free navigation. Specifically for
dynamic obstacles the robot had to navigate back forth from the starting position to the tree 5 times
with a human in the arena and 5 times with another robot. (Saravanan & Kourris)

4.1.6. Test T6: Move end effector to specific position and orientation

We tested functions F4.2 and F4.3. A 3D position and orientation were given to the manipulator. We
measured the deviation of the end effector’s final position and orientation from the preset one. To
accurately evaluate the manipulator, this test was performed ten times. (Kourris)

4.1.7. Test T7: Stop the manipulator from colliding with a human

We tested the function F4.5. A 3D location of an apple is computed and set as the goal position for the
manipulator. To test this function, a human arm is used to block the robot’s path. The purpose of the test
is to evaluate whether the robot can stop by setting its velocity to zero upon detecting the obstruction,
and then resume its movement once the obstruction is cleared. Additionally, the performance under
different lighting conditions was tested, and the position accuracy of keypoints of a slow-moving human
arm was evaluated. The human arm detection pipeline was evaluated for detection speed and accuracy.
(Saravanan & Kourris)

4.1.8. Test T8: Grab apples and place them in the basket of the robot

We tested the function F4.1. This test was meant to test the ability of the gripper to grab and hold on
to apples. The gripper was given a known apple location and had to navigate to it and grab the apple.
(Kourris & Kritharoulas)

4.1.9. Test T9: Detect farmer’s start/stop hand gestures and comply accordingly
We tested F3.5 to verify the robot’s response to start/stop hand gestures. In a static environment, the
robot remained still until it detected a thumbs-up gesture through its gripper camera, then success-
fully moved toward its goal. Subsequently, upon detecting an open-palm (stop) gesture, it halted as
expected, confirming proper functionality. (Kritharoulas)
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4.2. Validation results

4.2.1. Test T1: Build a map of the environment

When tested T1, the robot met all the requirements and was able to map the closed environment
without deviation. It is to be noted that the robot sometimes deviates from the true representation for
a short amount of time, especially when the environment has too few features (mostly empty; without
any obstacles). However, loop closure effectively corrected these errors upon revisiting known areas,
ensuring the final map was accurate and consistent. (Saravanan)

4.2.2. Test T2: Classify trees, ripe and unripe apples

When evaluating T2, after 50 epochs the algorithm achieved a bounding box regression loss of 0.44,
which means the model has reasonable accuracy in assigning bounding boxes. A classification loss of
0,24 on the validation set shows that there is high accuracy in labeling the three different classes. Fur-
thermore the Mean Average Precision at loU threshold of 0.5 reached 0.99, meaning detections were
almost always correct and complete. Thus, test T2 was declared as passed successfully. However,
more inference test can be conducted in varied lighting conditions. (Saravanan & Van der Weij)

4.2.3. Test T3: Estimate position of objects in the environment

In Test T3, the robot successfully detected the tree and accurately identified the target objects. Object
classification and localization were consistent throughout the test. However, a small but consistent bias
was observed in the distance measurements to the detected objects. (Saravanan)

4.2.4. Test T4 & T5: Navigate robot base while avoiding obstacles

During tests T4 and T5, all requirements were met. The algorithm successfully loaded the map and
computed the robot’s initial location relative to the map frame. While autonomous localization was
initially imprecise, manually providing an approximate start point improved performance. The robot
refined its position as it moved and received new sensor data. Path planning and obstacle avoidance
worked consistently, allowing the robot to reach its target. Minor issues included occasional sensor
delays due to network congestion and difficulty navigating narrow paths caused by obstacle inflation.
Overall, both tests were successful. (Saravanan & Kourris)

4.2.5. Test T6: Move end effector to specific position and orientation

While conducting test T6, small deviations were measured for both position and orientation. Specifically,
there was a position error of + 2.5cm and for the orientation an error of + 5 degrees. These errors
were considered small enough that a low-level controller could compensate for them. Even though the
manipulator was not totally accurate, the results were considered acceptable. (Kourris)

4.2.6. Test T7: Stop the manipulator from colliding with a human

Test T7 passed successfully. It was tested under different lighting conditions and varying positions of
human intervention in the camera’s field of view. We observed that the keypoints of the hand was
accurately detected in real-time with occasional reduction in total keypoints. However, at all times,
detected keypoints were sufficient to trigger a command to the manipulator to pause the motion. When
the human arm went out of the camera’s field, the manipulator could continue its path without any jerk
and other suboptimal behavior. (Saravanan)

4.2.7. Test T8: Grab apples and place them in the basket of the robot

Test T8 was considered inconclusive. While the gripper was able to navigate to the right location due
to a hardware malfunction, the gripper did not function, and as such, the results have been deemed
inconclusive. (Kourris & Kritharoulas)

4.2.8. Test T9: Detect farmer’s start/stop hand gestures and comply accordingly
Test T9 was considered successful. It was performed with various positions of human gestures within
the camera’s field of view. However, recognition accuracy decreased with distance, and the camera
image was rotated by 90° due to the way it was mounted on the gripper. (Kritharoulas)
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4.3. Software changes

4.3.1. Test T1: Build a map of the environment

When the robot observes a dynamic obstacle during exploration, the map tends to have artifacts, such
as single-pixel false-positive obstacles. These were mitigated by tuning the mapping parameters per-
taining to slam_toolbox_node. The test T1 was later updated to eliminate such artifacts during mapping.
(Saravanan)

4.3.2. Test T2: Classify trees, ripe and unripe apples

Data augmentation techniques were applied to enhance the robustness of the detection system. These
included adjustments to lighting conditions using HSV value modifications and saturation adjustments
of the apples to improve real-life detection of high or low-saturated red apples. This increased the
detection mAP50 score after 50 epochs from 0.62 to 0.99. (Saravanan & Van der Weij)

4.3.3. Test T3: Estimate position of objects in the environment

This bias was traced to minor distortions in the gripper-mounted camera. It was effectively mitigated by
recalibrating the camera and applying the obtained lens distortion parameters to rectify the image. After
rectification, the distance was estimated using the intrinsic calibration matrix. The recalibrated camera
showed significantly improved results, enhancing overall object localization accuracy. The inflation
radius of the obstacles was reduced to make passing through tight corridors easier. (Saravanan &
Kourris)

4.3.4. Test T4: Move robot base to a specific location on the map

To improve the planner, the parameters of the MPPI algorithm were tuned and tested in the real world.
This resulted in a smoother global path and paths that were not very close to the inflated obstacles.
Robot localization was also improved by tuning parameters related to the AMCL node, including sensor
update frequency, particle size, and so forth. (Saravanan)

4.3.5. Test T5: Avoid dynamic and static obstacles

For Test T5, the configurations of the MPPI controller were modified, specifically the constraint, cost,
and path alignment critics. These adjustments led to improved controller performance across the eval-
uation parameters defined in Test T5.(Saravanan)

4.3.6. Test T6: Move end effector to specific position and orientation

From the results of test T6 it was clear that a low-level controller for fine-tuning the gripper position
needed to be developed; unfortunately, due to time constraints, that was not implemented. The velocity
of the manipulator was, however, reduced in order to allow the gripper to reach the end position more
accurately. (Kourris)

4.3.7. Test T7: Stop manipulator from colliding with a human
Since all the requirements were achieved successfully. No software change was required in the module.
We hypothesize this due to its robust and accurate detection of the human arm in real time. (Saravanan)

4.3.8. Test T8: Grab apples and place them in the basket of the robot

Because of the hardware malfunction, the entire apple-picking strategy had to be reinvented. Using
the compliance of the gripper, it was made to pick up apples by driving into them with the gripper and
dropping them into the basket using friction. While the apple-picking success rate was very small, using
friction to drop the apples into the basket was more reliable, but also very slow. Because this solution
came at the last minute due to necessity, the team has considered it an acceptable comprise in the
absence of a functioning gripper. (Kourris & Kritharoulas)

4.3.9. Test T9: Detect farmer’s start/stop hand gestures and comply accordingly
From T9, we found we needed to adjust the gesture detection’s confidence parameters for reliable de-
tection at greater distances, and add a preprocess step to correct the camera’s 90° rotation. (Kritharoulas)



Project Conclusions

In this chapter, we will present our final robotic solution and show our robot’s potential. We will also
discuss how the robot can be deployed and what the limits of our solution are. (Termote)

Figure 5.1: MIRTE Master robot in arena with custom basket (Van der Weij)

5.1. Concluding remarks

After an intense quarter of research and development, we are proud to finally present our solution.
Currently, our solution is able to autonomously create a 2D map of its environment. It can find orchards
in its view and obtain their location on the map. Our robot is able to navigate towards a given location,
which can be the basket or the tree. Additionally, our solution can find green and red apples in its view
and find the 3D position of red apples. Our gripper can autonomously move towards the red apples
with help of its gripper camera and a custom storage unit (see Appendix C) on the back of the robot was
designed and fitted which enabling efficient storage and retrieval of apples during runtime. For keeping
humans safe while the robot operates, a functionality is present in which the robot arm will stop when
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it sees a hand in front of the camera. Lastly, our robot can stop or continue driving based on human
hand signals spotted on its camera. The potential of our robotic solution lies in integrating all these
functions successfully. Our solution will then be highly autonomous and only limited manual control is
needed. Also, a detailed GUI can be created which would give the user real-time information during the
process of collecting apples. Small-scale apple farmers should be interested in our solution because of
the potential of autonomous apple picking. Also we devised an original, robust apple storage/retrieval
which can be seen in Figure 5.1. (Termote)

5.2. Deployment steps

To deploy our solution, the user should first place the robot in or near the orchard with a charged battery.
The operator should be present to communicate with the robot. Then, start the autonomous exploration
phase. Once the tree has been located, use this location to send the robot to the tree. The 3D apple
locations will have been found autonomously. Next, start the autonomous arm-to-apple functionality.
Once the apple has been gripped, the user should activate the gripper to move back to the apple carrier
attached to the robot. Then, once a few apples have been grabbed, the user should send the robot to
the basket to deliver the apples. This process can be repeated until there are no more apples or the
battery runs out of charge. (Termote)

5.3. Operational design domain

First of all, the robot should be put in an environment with landmarks like trees or walls so it can find
its locations on a map- a flat plane will not suffice. The terrain should be even and not slippery. The
weather must be clear as to not block the LiDAR or cameras because without these sensors, the robot
will not function correctly. The robot should have access to a network with a sufficiently large bandwidth
so that data can be streamed from the robot to the user. Only red apples can be obtained, and only
trees with green leaves and brown trunks can be recognized. (Termote)

5.4. Known issues

Unfortunately some issues could not be resolved, and optional requirements could not be realized within
the development window of two months. There were global issues and issues as follows. (Termote)

Global

In general, there were a number of issues that could not be resolved or kept occurring. To start, the
network in the testing and developing facility (CoR TU Delft) was often overloaded by other teams which
slowed down progress and lowered the maximum network load by our robot. Also, some servos in the
arm kept breaking, which resulted in us not being able to use the gripper during the demonstration
day. However, a fault-tolerant solution was designed to make the gripper compliant with elastic bands
and planned a path such that the un-actuated (broken) gripper grabs the localized apple. The dropping
maneuver was performed such that the grabbed apple is slid along the basket, creating tangential force
to eventually drop it. There was also not enough time to fully integrate all standalone functionalities into
a single autonomous machine, and we had to rely on the user activating automated parts. Additionally,
no finite state machine was designed for the robot. Having lower priority to the functioning of the robot,
there was no time for an expanded Graphical User Interface (GUI). Currently unfortunately no GUI
status messages are sent to the user. (Termote & Saravanan)

Perception

There were also some issues specific to the perception team. Firstly, there was no time to write logic
for prioritizing certain apples in the object detection model. Also, the tree recognition node would also
recognize half trees, which causes issues with the localization which were not solved. (Termote)

Planning

Some issues in planning remained active due to time constraints, like creating a low-level controller
for fine-tuning the position of the gripper and base. Additionally, no node for emergency stopping was
developed. (Termote)



Postface

Congratulations to finishing your project! As the teaching staff of the Multidisciplinary Project, we want
to take the moment to thank you for joining the course and extend our appreciation for your dedication,
creativity, and hard work throughout the entire duration of this 8 week project. We hope that your perse-
verance and collaborative spirit have truly paid off, resulting in the successful completion of the project
and demonstration of your robot. As you reflect on this milestone, remember the valuable lessons
you've learned, the team-spirit you’ve forged, and the memories you’ve created together. May this
experience fuel your curiosity, drive, and ambition as you continue to pursue your passions throughout
your Master studies at TU Delft and your future endeavors. We cannot wait to see where your journey
will take you next!

Your MDP 2025 Teaching Team
November 19, 2025
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YOLOV8n model evaluations

Here you can find visualizations of the evaluation of our YOLOv8n model after fine-tuning on the custom
created dataset. In Figure A.1, model predictions on the input batch are shown. In Figure A.2 and A.3
the F1 curve and P curve of the model can be seen, respectively.
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Figure A.1: Prediction of model for first batch to be processed. Confidence scores are shown next to
class labels.
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26 A. YOLOV8n model evaluations

F1-Confidence Curve
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Figure A.2: F1 Curve of our model
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Figure A.3: P curve of our model



Navigation Module

Figure B.1 depicts the global costmap depicting free space of CoR department (white), obstacles (dark
purple), and inflation layers (light blue) for robot navigation, along with a planned path (red) and sensor
readings (scattered white/pink dots). (Saravanan)

Figure B.1: Figure depicting visualization of robot navigation in RViz2 (Kourris)
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Custom made basket

Here you can find the CAD files of the custom printed basket and roll support created by the team.
These CAD files were 3D printed and attached to the MIRTE Master base of our robot to efficiently
collect and pick apples. See Figure C.1 and C.2 for the designs. (Van der Weij)

Figure C.1: Custom designed basket (Van der Weij)
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30 C. Custom made basket

Figure C.2: Custom designed roll support for our robot (Van der Weij)
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