
1

Disturbance-Robust MPC for Output Tracking of
Underactuated Systems with Ellipsoidal Terminal

Set
Max Dam (6055745), Mukil Saravanan (6195474)

Abstract—We study a model predictive control (MPC) ap-
proach for drones with tethered cargo. The designed controller
uses output MPC with disturbance rejection to steer a drone
to the desired steady state while under linear state and output
constraints. To ensure recursive stability, a terminal constraint
that utilizes an ellipsoidal level set approximation to approximate
the control invariant set is implemented. Asymptotic stability is
mathematically proven and compared to an empirical result. The
solution is compared to the performance of an LQR controller,
and the tuned cost matrices are compared to identity matrices.

I. INTRODUCTION

In recent years, organizations have started to explore the
use of drones for last-mile delivery or transport of items. The
volume and form factor of the cargo is generally constrained
by the container attached to the drone. To overcome this
limitation we envision a niche for cargo drones with loads
suspended by a tether instead of rigidly attached to the
drone body. Off-the-shelf drone control systems are designed
with the assumption that the drone body and cargo act as a
single rigid body, performance of these controllers is therefore
not optimal for the case of a suspended load. Furthermore,
constraint on load deflection are required to make sure the
load does not impact the drone body or thrusters. For ease of
reading, we will refer to the load as the ”pendulum” in the
rest of this report.

To address the challenges described above, we have de-
signed a model predictive controller that utilizes the linearized
dynamics of the drone-pendulum system. The controller is
used steer the system to a stable reference state while respect-
ing state, control, and terminal constraints - and while rejecting
constant disturbances caused by model mismatch between the
linearized and true dynamics. In addition, we show that the
system can achieve this control in real time. We simulate the
system in a custom simulation environment that implements
the system’s full nonlinear dynamics as empirical proof.

A. System dynamics and assumptions

As the focus is on controller design and not on system
identification, we have limited the current work to a case of a
planar drone with a configuration in SE(2)× S. The system
therefore has an 8-dimensional state space, 6 dimensions for
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Fig. 1. Configurations of a planar drone

the drone, and 2 for the pendulum. We have opted to neglect
drag in the equations.

For the planar case, we assume the drone has 2 thrusters
without spin-up time as actuators. Each of these can generate
a force that can be positive or negative. This gives the drone
2 scalar control inputs, making it an underactuated system.

The full state and input vectors are:

x =
[
x y ψ θ ẋ ẏ ψ̇ θ̇

]⊤
u =

[
u1 u2

]⊤
Where:
• x, y: Drone translation in meters (m)
• ψ: Drone rotation angle in radians (rad)
• θ: Pendulum angle in radians (rad)
• ẋ, ẏ, ψ̇, θ̇: Velocities of the corresponding states
• u1, u2: Thruster forces in Newtons (N)

Of these states, x and y are observed by the controller.
The controller uses a linearized version of the full nonlinear

dynamics. The dynamics have been derived by solving the
system’s Lagrangian using a computer algebra system. The
dynamics have been linearized around steady-state hovering
using a small angle approximation for ψ and θ. For the full
formulation, see the git repository [3]. For the full dynamics
and linear system matrices, see VI.
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For use with the controller, linear dynamics have been
discretized with the use of the matrix exponential [4]. This
turns the linear system from the continuous form

ẋ = Acx+Bcu

y = Cx

to the discrete form

x+ = Adx+Bdu

y = Cx

II. MODEL PREDICTIVE CONTROL DESIGN

A. Horizon and frequency

The MPC is designed to steer towards a stable reference
state while respecting state, input, and terminal constraints. For
practical reasons, all states were constrained to create a ”box”
in order to keep the required horizon N relatively low. In the
end, a horizon N = 40 was chosen with a control frequency
of 10Hz. This setup preserved stability and feasibility during
all of testing. The combination was obtained by setting the
reference output to the extremes of the state constraints of the
x and y positions and increasing N until the problems became
feasible from any stationary starting position within the space.

B. Cost functions

The controller tries to find a sequence of control inputs that
minimizes the following cost function:

J(x0, u) =

N−1∑
k=0

ℓ(x(k), u(k)) + Vf (x(N))

s.t. u ∈ U, x ∈ X, x[N ] ∈ Xf

where:
• ℓ(x(k), u(k)) is the stage cost function, which quantifies

the cost incurred at each time step k as a function of the
state x(k) and the control input u(k).

• Vf (x(N)) is the terminal cost function, which quantifies
the cost associated with the final state x(N) at the end
of the prediction horizon N .

The stage and terminal cost functions are:

ℓ(x(k), u(k)) =
1

2
(x(k)TQx(k) + u(k)TRu(k))

Vf (x(N)) = x(N)TPx(N)

where:
• Q = Diag(1, 1, 20, 20, 1, 1, 5, 5) is the state cost matrix.
• R = 0.1I is the input cost matrix
• P is the solution to the discrete algebraic Riccati equa-

tion.
Q and R were manually tuned to bias the controller to

keeping ψ and θ close to the equilibrium point.

C. State and input constraints

The system makes use of linear state and input constraints.
These are formulated in matrix form as:

Hxx ≤ hx

for the state, and
Hu ≤ hu

for the input.

The state constraint are:

−π
6
≤ ψ ≤ π

6

−π
6
≤ ψ − θ ≤ π

6

The first constraint is in place to minimize the discrepancy
between the true and linear dynamics caused by the small
angle approximation. The second constraint imposes that the
angle between the drone body and the pendulum does not
exceed some limit, this is to satisfy the idea that the cargo
should not swing around relative to the drone body as it might
hit itself.

All other state constraints were taken as

−10 ≤ xi ≤ 10

In order to keep the problem constrained and make trou-
bleshooting easier during development.

The input constraints are:

−20 ≤ ui ≤ 20 i ∈ {0, 1}

These values were chosen as they allow the controller to
accelerate the drone upwards with an acceleration of one g.

D. Terminal set

To guarantee recursive stability, a terminal set constraint
of the form x[N ] ∈ Xf is implemented into the MPC
formulation.

The terminal set is implemented as a convex ellipsoidal
constraint based on Riccati’s P , obtained by solving the
discrete algebraic Riccati equation (DARE). This constraint
is written as

(x− xref )⊤P (x− xref ) ≤ γ

Where γ is a constant scaling factor calculated using the
algorithm described in 2. This level set satisfies the Lyapunov
decrease condition, as described in III-B, and thus guarantees
stability.

In addition, the controller checks if an admissible sequence
exists for x0 during setup time. If not, the controller informs
the user before starting the optimizer.
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E. Optimal Target Selection (OTS)

In order to not have to manually find stable reference
outputs, OTS was added to the controller. During setup, the
controller is passed a reference output yref and solves the
following optimization problem:

minimize
xref,uref

xTrefIxref + uTrefIuref

subject to (I −Ad)xref −Bduref = dgravity

Cxref = yref

Hxxref ≤ hx
Huuref ≤ hu

where:

• xref ∈ R8 is the desired state.
• uref ∈ R2 is the desired control input.
• Ad, Bd, C,Hx, Hu, hx, hu are the system dynamics and

constraints matrices and vectors.
• dgravity is the gravity term that the system needs to reject.
• I is the identity matrix of appropriate dimension (8x8 for
xref and 2x2 for uref ).

• yref is the desired output

The OTS solver computes xref and uref that minimize the cost
function while satisfying the given constraints.

F. Constant disturbance rejection

In order to overcome steady-state errors due to model
mismatch, disturbance rejection for constant (or slowly chang-
ing) disturbances was added. In our case, this was used to
compensate for gravity, but it can be used for other sources
of uncertainty.

In order to capture the disturbance, the dynamics as im-
plemented in the controller are augmented with an extra term
dest to become

x+ = Adx+Bdu+ dest

dest is initialized as a zero vector. After each prediction
of the controller, the initial state and control input are stored.
In the next prediction, this saved state and control input are
used to make a prediction. This prediction is then used in
conjunction with the actual next state (the current initial state)
to update the estimated disturbance using a filter:

xpred = Adxprev +Bduprev

draw = x0 − xpred
dest = αddest + (1− αd)draw

where:

• xpred is the predicted output.
• draw is the measured disturbance at the current timestep.
• αd is the filter coefficient.
• dest is the estimated disturbance vector.

III. ASYMPTOTIC STABILITY

This section presents a mathematical and empirical valida-
tion demonstrating that the proposed regulation Model Predic-
tive Control (MPC) design achieves asymptotic stabilization
of the closed-loop system within the established Region of
Attraction (ROA). The verification is conducted by confirming
the sufficient conditions delineated in [1]

A. Linearized System Stability Analysis

Proposition 2.1 (Continuity of system solution):

The non-linear dynamics of the system as described in VI
f(x,u) is Lipschitz continuous1. The linearized equations as
described in VI-B are inherently Lipschitz continuous due to
their Linear Time-Invariant (LTI) property. Thus, the system
solution ϕ(k;x,u) is continuous for k ∈ Z

Assumption 2.2 (Continuity of system and cost):: From
proposition 2.1 in III-A, the system is Lipschitz continuous.
The stage cost (Lagrange cost) l(x,u) and the terminal
cost (Mayer cost) Vf (x) as defined in II are continuous.
At equilibrium point xeq = {0} under no input unull = 0,
f(xeq,unull) = l(xeq,unull) = Vf (xeq) = 0. Additionally,
the cost penalties Q,R,P are Positive Definite (PD). Since
cost terms and penalties are quadratic and PD respectively,
then l : Z→ R≥0, Vf : X→ R≥0

Assumption 2.3 (Properties of constraint sets):: This as-
sumption is satisfied as X is closed in R8 and U is closed and
bounded (i.e., compact) in R2. Hence, for all pairs of states
and inputs, X×U→ Z is also compact. As terminal set Xf is
designed as the level set of quadratic terminal cost (which is
closed in R8), Xf is closed and bounded in R8, hence Xf ⊆ X.

The equilibrium point is found by finding some ϵ > 0 such
that xeq belongs within that ϵ. This implies origin is not on
the boundary of Xf but in the neighborhood around the origin
of Xf (i.e,) xeq ∈ int(Xf ). This is depicted in Figure 2.

Assumption 2.14 (Basic stability assumption):: Under the
above two assumptions and the MPC formulation, any con-
trollable (initial) state x0 ∈ XN is driven into the terminal
set at the end of the time-horizon N . Once the state is in Xf ,
there exists a control law κ(x) = Kx, where K is Riccati gain
obtained by solving the Discrete Algebraic Riccati Equation
(DARE) of infinite horizon unconstrained LQR equation. The
terminal set Xf is constructed in a way such that all the
inputs computed from the control law are well-compact (i.e.)
κ(x) ∈ U.

To prove the positive control invariance of Xf and Lyapunov
decrease condition, we prove the following conditions,
(a) l(x, κN (x)) ≥ α1(|x|) ∀x ∈ XN ;∀u ∈ U
(b) Vf (x) ≤ αf (|x|) ∀x ∈ Xf

where α1(.), αf (.) are κ∞ comparison functions.

1All the analyses can be found in https://github.com/BaCyka1/SC42125
project

https://github.com/BaCyka1/SC42125_project
https://github.com/BaCyka1/SC42125_project
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Fig. 2. 2-D mapping of the estimate of XN for different x and y initial
conditions. The green ellipse represents the terminal state Xf for states x and
y. The plus sign represents the equilibrium point {0}

Lemma 2.14(a): Under the LQR control law κ(x) = Kx,

l(x, κ(x)) =
1

2
(x⊤Qx+ (Kx)⊤R(Kx))

= x⊤(Q+K⊤RK)x
(1)

Since Q,R is PD and K⊤K > 0, then (Q+K⊤RK) is also
PD.

From Rayleigh’s inequality (bounds of a positive definite
matrix) [2], we write equation 1 as

ℓ(x, κ(x)) ≥ λmin(Q+K⊤RK) · ∥x∥2 (2)

where λmin is the smallest eigenvalue of (Q+K⊤RK)
From the equation 2, we write α1(.) ∈ κ∞ as

α1(|x|) = λmin(Q+K⊤RK)·||x||2 ⇒ ℓ(x, κ(x)) ≥ α1(|x|)

Hence, the assumption 2.14 (a) is proven.

Lemma 2.14(b): From the definition of Vf (x) = x⊤Px,
where P ∈ PD, obtained from solving DARE.

Vf (x)

{
> 0 if x ∈ Xf \ {0}
= 0 if x = 0

From Rayleigh’s inequality (bounds of a positive definite
matrix), we write αf (.) ∈ κ∞ as

αf (|x|) = λmax(P )||x||2 ⇒ Vf (x) ≤ αf (|x|) (3)

where λmax is the largest eigenvalue of the matrix P.
Additionally, this is proven with prepositions 2.15 and 2.18
in [1]. Hence, the assumption 2.14 (b) is proven.

Under the above lemmas, we first prove the Lyapunov
decrease condition within the terminal set,

Vf (f(x, κ(x)))− Vf (x) ≤ −ℓ(x, κ(x)), ∀x ∈ Xf .

Substituting the linear dynamics, AK := A+BK for x+

Vf (x
+)− Vf (x) = x⊤(A⊤

KPAK − P )x

Rearranging DARE, we get A⊤
KPAK−P = −Q−K⊤RK

and from equation 1, we get

Vf (x
+)− Vf (x) = −x⊤(Q+K⊤RK)x = −ℓ(x, κ(x))

(4)

Hence, the Lyapunov decrease condition within the terminal
set is proven.

To check the positive control invariance of the ellipsoidal
terminal set under LQR control law, we need to show if
Vf (x) = x⊤Px ≤ γ ∀x ∈ Xf then,

Vf (x
+) = x+⊤

Px+ ≤ γ

From the Lyapunov decreases condition in 4, we get

Vf (x
+) ≤ Vf (x)− ℓ(x, κ(x))

x+⊤
Px+ ≤ x⊤Px− ℓ(x, κ(x)) ≤ x⊤Px ≤ γ

⇒ x+⊤
Px+ ≤ γ

⇒ x+ ∈ Xf

(5)

Hence, the ellipsoidal terminal set is a positive control invari-
ant set.

Under assumptions 2.2, 2.3, and 2.14, it is proven that the
equilibrium point xeq = {0} is asymptotically stable, locally
with respect to the RoA set XN for the linearized dynamics
(A,B) under the described MPC control law κN (x)

B. Construction of ellipsoidal terminal set Xf

Following the establishment of stability for the linear sys-
tem, the objective is to determine an ellipsoidal control invari-
ant and constraint admissible set, denoted as Xf , and a Region
of Attraction set, denoted as XN , such that initial conditions
within these sets are guaranteed to converge asymptotically
towards the origin.

To ensure that the MPC optimal control input behaves as an
unconstrained infinite-horizon LQR control input, the terminal
set Xf is defined. Within this set, the MPC control law κN (x)
simplifies to the linear feedback law Kx, where K is the
optimal LQR gain obtained from solving DARE.

The terminal set is designed as the level set of terminal
Lyapunov function Vf = 1

2x
⊤Px, where P is the solution of

DARE.

Xf = {x ∈ R8 | Vf (x) ≤ γ} (6)

subject to ρ > 0, Xf ⊆ X, and KXf ⊆ U. Algorithm 1
determines the semi-axes of the 8-dimensional ellipsoid by
utilizing the eigenvectors and eigenvalues of the matrix P .
The admissibility of control inputs within Xf is verified by
evaluating the corner points of an over-approximated poly-
tope encompassing the ellipsoidal terminal set, ensuring that
all control actions computed within Xf satisfy the control
constraints. An optimization problem, as detailed in Algo-
rithm 2, is formulated to compute the optimal scaling factor
γ⋆, which maximizes the volume of Xf while guaranteeing



5

control admissibility. This formulation introduces a quadratic
terminal constraint into the Optimal Control Problem (OCP),
necessitating a Quadratically Constrained Quadratic Program
(QCQP) solver. An attempt to tightly linearize the ellipsoidal
set using convex hulls, without under-approximating Xf , was
undertaken. However, this approach resulted in an intractable
number (1,261,786) of linear constraints in the 8-dimensional
space. Consequently, the ellipsoidal terminal set representation
is adopted for subsequent analysis.

C. Estimation of XN using Xf

While not directly used in the optimization, a program
for approximating the admissible set XN was created for
visualization purposes.

In the controller, before online optimization, the initial state
is checked using the part of the algorithm that evaluates the
admissibility of an initial state. See VI-D for the full algorithm.

D. Confirmation of a-priori assumptions

An empirical validation of the Lyapunov decrease condition
is depicted in Figure 3. It is observed that the equation 4 when
it enters the terminal set Xf . Notably, initially the two graphs
(Blue: Vf (x+)− Vf (x), Orange: −ℓ(x, κ(x)) have an offset.
This suggests the state x has not entered Xf . However, the
total cost converges to zero over timesteps.

Fig. 3. Empirical validation of Lyapunov decrease condition as in Equation
4

IV. NUMERICAL SIMULATIONS

A. MPC with Different Cost Function Weightings

To test the tuning of the Q and R matrices, the tuned
controller was compared to the performance of a controller
with identity matrices. The controller was made to move from
(0,0) to (5,5). From Figure 4, it is observed that tuned
cost penalty matrices as in section II show a faster time
response than identity matrices.

Fig. 4. Step response of MPC with tuned vs untuned matrices

Fig. 5. Step response of MPC with disturbance rejection and unconstrained
LQR

B. Output MPC and Disturbance Rejection - Comparison with
unconstrained LQR

To test the effectiveness of the disturbance rejection, the
controller was compared to an unconstrained LQR controller
with a step response. A reference output of (2, 2) was set, and
the initial state was the zero vector.

From Figure 5, it is evident that the unconstrained LQR has
a state-steady error of around 0.5 m while the MPC controller
converges the target reference state.

C. Demo animation

Our custom simulation environment includes graphics. We
would like to share one of the test runs as an approachable
result. Link to video.

V. CONCLUSION

The nonlinear dynamics of an underactuated 2D drone
with an inverted pendulum were linearized around the hov-
ering equilibrium. While the system is fully controllable, its

https://youtu.be/dvh5GzKWKmA
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under-actuation necessitates a focus on controlling specific
output states (position or velocity) through appropriate output
matrix selection. Comparative simulations of unconstrained
LQR and output-MPC with disturbance rejection demonstrated
the significant impact of MPC design parameters on closed-
loop system behavior and stability. A rigorous mathematical
stability analysis was developed and validated numerically.
Future research should explore trajectory tracking in a realistic
3D quadrotor scenario, incorporating unknown disturbance
rejection.
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VI. APPENDIX

A. Non-linear dynamics of the system
The non-linear dynamics equations of a 2D drone are

derived using Newton-Euler formulation. Refer to Figure 1
for notations.

Dx,y =−m2
d +mdml sin

2 (θ) +mdml cos
2 (θ)

− 2mdml +m2
l sin

2 (θ) +m2
l cos

2 (θ)

−m2
l

ẍ =
1

Dx,y
[FTmd sin(ψ)− FTml sin(ψ) sin

2(θ) + FTml sin(ψ)

− FTml sin(θ) cos(ψ) cos(θ)− lrmdml sin(θ)θ̇
2

+ lrm
2
l sin

3(θ)θ̇2 + lrm
2
l sin(θ) cos

2(θ)θ̇2 − lrm2
l sin(θ)θ̇

2]

ÿ =
1

Dx,y
[−FTmd cos (ψ)− FTml sin (ψ) sin (θ) cos (θ)

+ FTml cos (ψ) cos
2 (θ)− FTml cos (ψ)

+ gm2
d − gmdml sin

2 (θ)

− gmdml cos
2 (θ) + 2gmdml

− gm2
l sin

2 (θ)− gm2
l cos

2 (θ)

+ gm2
l + lrmdml cos (θ)θ̇

2

− lrm2
l sin

2 (θ) cos (θ)θ̇2

− lrm2
l cos

3 (θ)θ̇2

+ lrm
2
l cos (θ)θ̇

2]

ψ̈ =
−F1ld + F2ld

Id
(7)

Dθ = −lrmd + lrml sin
2 (θ) + lrml cos

2 (θ)− lrml

θ̈ =
1

Dθ
[−F1 sin (ψ) cos (θ) + F1 sin (θ) cos (ψ)

− F2 sin (ψ) cos (θ) + F2 sin (θ) cos (ψ)]

B. Linear system dynamics

To linearize the derived non-linear equations, two approxi-
mations are made as follows

1) Linearized around hovering of the drone
2) Small angle approximation for ψ ≈ 0 and θ ≈ 0

Note that the system matrices A, and B are in the continuous
time domain.

A =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 g(−md−ml)
md

gml

md
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 g(md+ml)
lrmd

− g(md+ml)
lrmd

0 0 0 0



B =



0 0
0 0
0 0
0 0
0 0
1

md+ml

1
md+ml

− ld
Id

ld
Id

0 0



C. Appendix - Computing ellipsoidal terminal set

Algorithm 1 computes an ellipsoidal terminal set for MPC
and verifies its control feasibility. It is done by checking
control input bounds at the vertices of an over-approximating
polytope.

Algorithm 1 Constructing Ellipsoid Polytope and Input Con-
straint Check

1: procedure CONSTRUCTANDCHECKFEASIBLITY(P , γ,
K, ulb, uub)

2: xTPx ≤ γ
3: [λ, V ]← eig(P )
4: L←

√
γ/λ

5: dim← size(P, 1)
6: S ← all sign combinations of [−1, 1]dim

7: A← diag(L)
8: corners← (V ·A · ST )T

9: ulb ≤ u ≤ uub for u = Kx
10: feasible← True for i← 1 to size(corners, 1) do
11:

end
xcorner ← corners[i, :]

12: u← K · xcorner if ¬all(ulb ≤ u ∧ u ≤ uub) then
13:

end
feasible← False

14: return feasible
15: end procedure

http://en.wikipedia.org/w/index.php?title=Rayleigh%20quotient&oldid=1273982356
http://en.wikipedia.org/w/index.php?title=Rayleigh%20quotient&oldid=1273982356
https://github.com/BaCyka1/SC42125_project
https://github.com/BaCyka1/SC42125_project
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Algorithm 2 finds the optimal size (γ⋆) of an ellipsoidal
terminal set by minimizing the terminal set while ensuring
control feasibility within the ellipsoidal terminal set.

Algorithm 2 Find Optimal Ellipsoid Size γ⋆ Under Input
Constraints U

1: function FINDOPTIMALGAMMA(P,K, ulb, uub)
2: Initialize γ ← 1.0
3: function OBJECTIVE(γ)
4: V ← Algorithm1(P, γ) if ∀x ∈ V, u = Kx ∈ U

then
5:

end
return −γ else

6:
end
return +∞

7: end function
8: Solve minγ Objective(γ) subject to γ > 0
9: return optimal γ⋆

10: end function

D. Algorithm for computing feasible/admissible set

Algorithm 3 Estimate Terminal Set XN via Sampling
Input: MPC problem PN , target region definition
(Hx, hx), state space X, input space U, desired number
of samples nsamples

Result: An approximation X ′
N of the terminal set XN

Initialization:
1: Xf ← {x ∈ Rn | Hxx ≤ hx} ▷ Define target region
2: X ′

N ← ∅ ▷ Initialize empty approximation set
while |X ′

N | < nsamples do
3:

end
Sample a candidate initial condition x0 ▷ Get a new

IC to test (e.g., from X)
4: Check feasibility of MPC problem PN (x0,u) subject to

constraints:
x(N) ∈ Xf , u(k) ∈ U, x(k) ∈ X if the MPC problem

is feasible for x0 then
end
Result of the check above

5: X ′
N ← X ′

N ∪ {x0} ▷ Add feasible IC to the set
6:
7:
8: return X ′

N ▷ Return the estimated terminal set
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